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ABSTRACT 

Methyl group and folate-dependent one-carbon metabolism play an integral role in 

health and disease. The donation of carbon in the production of nucleic acids from folate 

coenzymes and the methylation of biological compounds via transmethylation metabolism is 

important for maintenance of cells and tissues. Disruption of these tightly regulated 

pathways can result from numerous factors, including genetic polymorphisms of key 

enzymes, nutritional deficiencies, hormonal imbalances, or drug-nutrient interactions. 

Glycine N-methyltransferase (GNMT) is a key protein that regulates the supply of methyl 

groups for S-adenosylmethionine-dependent transmethylation reactions. We have shown that 

retinoid administration increases GNMT activity and protein abundance, thereby leading to 

the loss of methyl groups. Previous studies used pharmacological doses (30 ~.~mol/kg BW) of 

various retinoids administered daily for a total of 10 d. Here, we examined the dose- and 

time-dependent relationship between all-Mans-retinoic acid (ATRA) administration and 

induction of -GNMT, as well as determining additional indices of methyl group, 

homocysteine, and folate metabolism. For the dose-response study, rats were given either 0, 

1, 5, 10, 15 or 30 ~.~mol ATRA/kg BW for 10 d. For the time-course study, rats received 30 

µmol ATRAIkg BW for 0, 1, 2, 4, or 8 d. A significant increase (P = 0.009) in GNMT 

activity (105%) was observed with doses as low as 5 µmol/kg BW, whereas maximal 

induction (231 %) of GNMT activity was achieved at 30 µmol/kg BW. Induction of hepatic 

GNMT by ATRA was rapid, exhibiting a 31%increase following a single dose (1 d) and 

achieving maximal induction (95 %) after 4 d. Plasma methionine and homocysteine 

concentrations were decreased 42 and 5 3 %, respectively, in ATRA-treated rats compared to 

control values. In support of this finding, the hepatic activity of methionine synthase, the 

folate-dependent enzyme required for homocysteine remethylation, was elevated 40% in 

ATRA-treated rats. This work demonstrates that ATR.A administration exerts a rapid effect 

on hepatic methyl group, folate, and homocysteine metabolism at doses that are within the 

therapeutic range used by humans. 
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CHAPTER 1. GENERAL INTRODUCTION 

Introduction 

Complex pathways work efficiently in mammals unless affected by environmental 

factors or predisposed conditions. Perturbations from pharmaceuticals can disturb this 

otherwise finely tuned system and have a detrimental effect on overall health. Additionally, 

nutritional deficiencies and hormonal disturbances to metabolism can disturb a 

predetermined genetic condition, putting a person at risk for disease. Metabolic pathways are 

complex and the disruption in the performance of one pathway can have detrimental 

consequences in complementary pathways. For example, there are many aspects of folate-

dependent one-carbon metabolism that can be altered when its cycle is disturbed. The folate 

cycle donates carbon groups for the synthesis of purines and pyrimidines, the essential 

components of DNA. Therefore, disruption of folate metabolism can affect DNA synthesis 

and result in megaloblastic anemia. Many mechanisms are present to control the folate 

pathway, however disturbances to the interrelated methionine cycle can ultimately affect the 

synthesis of DNA. The methionine cycle, also known as methyl group metabolism, functions 

to donate methyl groups in the synthesis of essential compounds like neurotransmitters, 

phospholipids, creative, and regulate gene expression. A disturbance of these pathways by 

nutrient insufficiencies or environmental conditions can result in diseased states including 

cardiovascular disease and cancer. 

Vitamin A is afat-soluble vitamin that is important in growth and overall health in 

mammals. Vitamin A is involved in cell differentiation and is used pharmacologically to 

treat skin disorders such as acne and psoriasis, as well as the treatment of acute 

promyelocytic Leukemia. Although the therapeutic use of retinoids is beneficial, retinoids in 

high concentration are toxic and can produce damaging side effects; therefore patients are 

thoroughly examined for side effects before and during the course of treatment. 

Vitamin A and its derivatives have the ability to disrupt folate-dependent one-carbon 

and methyl group metabolism. Research has established a link between retinoids and the 

modulation of one-carbon metabolism. Recent studies have demonstrated that the most 
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biologically active retinoid, all-Mans-retinoic acid, has the ability to alter methyl. group 

metabolism by regulating important enzymes involved. High, pharmacological doses of all-

trans-retinoic acid administered for 7-1 ~ days have been shown to induce enzymes in methyl 

group metabolism. Currently there is no understanding of the dose-response relationship 

between this active vitamin A derivative and the enzymes it induces, nor the length of time 

required for induction in relationship to the mechanisms involved.- Modulation of folate-

dependent one-carbon and methyl- group metabolism can aid in comprehension of the cycle 

and its regulation as well as the impact it has on the body in times of impaired health. 

Thesis Organization 

This thesis contains an introductory chapter that gives an overview of research on 

folate-dependent one-carbon and methyl group metabolism and how disruptions to various 

aspects of the pathway can ultimately affect health. The second chapter contains a paper 

submitted to and accepted by the Journal of Nutrition that illustrates the dose-response and 

time-course behavior of all-trans-retinoic acid on the aforementioned pathways. Chapter 3 

gives closing thoughts and ideas for future research in this area. The appendices have 

supplemental data from the two studies in the second chapter and an additional study 

involving the impact of increased protein intake on folate-dependent one-carbon and methyl 

group metabolism. 

Literature Review 

Folate-dependent One-carbon and Methyl Group Metabolism 

Folate-dependent one-carbon and methyl group metabolism are Interrelated pathways 

that occur primarily in the liver and require a number of regulatory mechanisms to maintain 

function at an optimum level. This review describes the two pathways and their association 

with each other and will underscore how perturbations and disruptions may affect overall 

health. 
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Fo[nte Metabolism 

Folate's role in the body is to distribute carbon for DNA synthesis and donate methyl 

groups for methyl group metabolism. Folate is introduced into the body by foods containing 

the water-soluble vitamin found most often in dark, green leafy vegetables. Folic acid, a 

monoglutamyl and oxidized form of folate, is another dietary source that is found in fortified 

foods and supplements (1). The importance of folate in health has increased the commercial 

availability of folic acid-fortified products, which typically dominates a person's daily intake. 

The Recommended Dietary Allowance (RDA) of folate is 400 dietary folate equivalents 

(DFE)/day (1 DFE = 1µg folate, 0.6 µg folic acid in fortified foods, or 0.5µg in 

supplements) for men and women and between 150 and 300 DFE/day for children, 

depending on the age. Folate plays an influential role in pregnancy and its requirement is 

600 DFE/day for pregnant women and 500 DFE/day for lactating women (2). Neural tube 

defects (NTDs) occur in the fetus and take place in 1 out of 1000 births in the United States 

and 1/3 of these are lost or terminated. There is a correlation between NTDs and folic acid 

but the mechanism of action is still unknown; however, it is strongly recommended for all 

women of childbearing age who are able to have children to consume 400 DFE/day (3). The 

malabsorption of folate has been associated with NTDs and may correlate to a higher rate of 

NTDs in some women (4). 

Severe folate deficiency can result in megaloblastic anemia, a disorder characterized 

by the formation of large, nucleated cells erythrocyte precursors. The reduction in DNA 

synthesis prevents these cells from dividing properly to become mature red blood cells (5). 

Other disorders from folate deficiency that can occur are leukopenia (decreased number of 

white blood cells) and thrombocytosis (surplus of platelets) (6). DNA methylation may 

ultimately affect cancer in the body as Lucock et al. (7) points out that improved folate status 

may prevent the formation of cervical and colon cancer as well as bronchial malignancies. 

These are prime examples of the impact folate have on human health. Other detrimental 

effects can occur from a folate deficiency but these will be discussed in detail later in 

relationship to methyl group metabolism. 

Folic acid is absorbed in the jejunum of the small intestine by hydrolysis with a 

conjugase intestinal enzyme located in the brush border (8). It is absorbed by both passive 
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diffusion and sodium-coupled carrier-mediated active transport before it is bound to folate-

binding proteins that transform folic acid to tetrahydrofolate (THF) and transport the newly 

formed molecules in plasma to the liver where half of the folate pool is located; THE is 

converted primarily to 5-methyl-THF and 10-formyl-THF in the liver before being 

transported to peripheral tissues (8). THE can be converted to be able to donate carbons in 

the production of purines and pyrimidines (Figure 1.1). The addition of formate to THE via 

the enzyme 10-formyl-THF synthase creates 10-formyl-THF, which donates carbon twice 

during purine biosynthesis, providing the G2 and C-8 in adenine and guanine as shown in 

Figure 1.2. A methyl group from serine transfers to THE via serine 

hydroxymefhyltransferase with cofactor vitamin B6 (in the form of PLP) and creates 5,10-

methylene-THF and the by-product glycine. The activity of the enzyme thymidylate 

synthase donates the auxiliary methylene group from 5,10-methylene-THF to produce 

deoxythymidylate monophosphate, the precursor of thymine (6,9) (Figure 1.1, 1.2). 

Dihydrofolate (DHF) is produced from this reaction and is reduced back to THE via DHF 

reductase. 

The folate derivative 5,10-methylene-THF can also be transformed by the enzyme 

5,10-methylene-THF reductase (MTHFR) and the cofactor Vitamin BZ (FADHZ) to 5-

methyl-THF, acoenzyme used in the remethylation of homocysteine to produce methionine 

de novo by methyl group metabolism (Figure 1.3) (10). Control of MTHFR is inhibited 

allosterically by S-adenosylmethionine (SAM), an important metabolite within the methyl 

group metabolism (11). SAM helps control the influx of methyl groups from the folate-

dependent one-carbon pool that are used for remethylation of homocysteine. If there is a 

sufficient amount of methionine to produce SAM, the increased SAM concentration inhibits 

the synthesis of 5-methyl-THF and the subsequent remethylation of homocysteine. There is 

more than one binding site for SAM on the MTHFR molecule and it will remain inactivated 

in the presence of SAM. The opposite action occurs if SAM levels decrease, producing an 

increase in MTHFR activity to generate 5-methyl-THF, which serves to remethylate 

homocysteine. 
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Figure 1.1 Diagram of the conversion of ingested folic acid into its active form, 
tetrahydrofolate (THF). THF can either be metabolized to 10-formyl-THF or 5,10-
methylene-THF to donate carbons in the production of nucleic acids. 5,10-methylene-THF 
can also be metabolized via enzyme 5,10-methylene-THF-reductase (MTHFR) and cofactor 
B2 to produce 5-methyl-THF, which remethylates homocysteine in methyl group metabolism. 
Abbreviations: DHF, dihydrofolate; MTHFR, 5,10-methylenetetrahydrofolate reductase; 
SHMT, serine hydroxymethyltransferase; THF, tetrahydrofolate. 
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and thymine, the building blocks of DNA. 

In the remethylation of homocysteine to achieve basal methionine concentration, the 

transfer of the methyl group from 5-methyl-THF to homocysteine produces THF and 

methionine via methionine synthase (MS), which requires the cofactor Vitamin B 12 (also 

known as cobalamin}. The methyl group attaches to B12 and becomes 

methylcyanocobalamin, before being transferred to the homocysteine molecule (12). A 

deficiency of nutrients (i.e., B 12, folate) in combination with the irreversible action of 

MTHFR can cause the majority of folate to remain as ~-methyl-THF, creating a "methyl 

trap" that impairs folate-dependent reactions (13 ). A deficiency in B i 2 will decrease MS 

activity by as much as 80% and aid in the ``methyl trap" (13) along with unregulated MTHFR 

activity (14). Homocysteine can also be remethylated by betaine, a product of choline 

oxidation. This reaction is activated by the enzyme betaine:homocysteine methyltransferase 

(BHMT), an enzyme found only in the liver in all mammals while humans also possess 

BHMT in the kidney and lens (15). choline, B 12, methionine, and folic acid are collectively 

known as lipotropes that are obtained in the diet (16). These nutritional compounds play an 
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Figure 1.3 The enzyme methionine adenosyltransferase (MAT) activates S-
adenosylmethionine (SAM), which methylates numerous biological compounds. Glycine N-
methyltransferase (GNMT) is available to maintain the transmethylation potential. S-
adenosylhomocysteine (SAH) is produced and hydrolyzed by SAH hydrolase to form 
homocysteine. Homocysteine can undergo transmethylation via the enzyme methionine 
synthase (MS) and coenzyme 5-methyl-THF or by the enzyme betaine:homocysteine 
methyltransferase (BHMT) and coenzyme betaine. If SAM concentrations are high, B6-
de endent cystathionine ~3—synthase (CBS) is activated to shunt homocysteine into the p 
transsulfuration pathway and the eventual catabolism to cysteine and a-ketobutyrate. 
Abbreviations: BHMT, betaine:homocysteine methyltransferase; CBS, cystathionine ~—
synthase; DMG, dimethylglycine; GNMT, glycine N-methyltransferase; MAT, methionine 
adenosyltransferase; MS, methionine synthase; MTHFR, 5,10-methylenetetrahydrofolate 
reductase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine. 
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important part in cellular metabolism and are essential for the synthesis and methylation of 

DNA, production of membranes, and metabolism of lipids. A deficiency of any of these 

compounds may lead to decreased immunocompetence, increased hepatic lipid accumulation, 

reduced xenobiotic metabolism, and influence the risk of promotion of cancer by upsetting 

folate-dependent one-carbon and methyl group metabolism (16). 

The folate-dependent one-carbon cycle utilizes folate derivatives as important carbon-

donating molecules in the synthesis of DNA as well as the production of methionine de novo 

in methyl group metabolism. The dietary intake of folate and folic acid is essential to 

maintain homeostasis within the cycle as coenzymes and enzymes react to optimize folate's 

role in the health process. Folate's relationship with methyl ..group metabolism can ultimately 

affect homocysteine metabolism and the importance of this relationship becomes apparent 

with its connection with cardiovascular disease. 

Transfer of Methyl Groups into Methyl Group Metabolism 

The relationship between folate and homocysteine has become a subject of intense 

research in recent years because of an association with cardiovascular disease. 

Homocysteine is a highly reactive amino acid and has been shown to promote oxidative 

stress by increasing hydrogen peroxide production in cell culture (17). Homocysteine is 

either remethylated by 5-methyl-THF or betaine or is further metabolized in the 

transsulfuration pathway by the irreversible enzyme cystathionine (3-synthase (CBS) (15) 

(Figure 1.3). Homocysteine is protein-bound and present in low levels (7-24 µmol/L) in the 

blood and urine; consequently, disruptions to the folate-dependent and methyl group 

metabolism by congenital or nutritional disorders can cause an abnormal elevation of 

homocysteine concentration (as high as 200 µmol/L) in the plasma and urine. These states 

are known as hyperhomocysteinemia and hyperhomocysteinuria (18). The hepatocyte's 

homeostatic control in exporting accumulated homocysteine prevents cellular toxicity; 

however, the expelled homocysteine may leave vascular tissue in a threatening position 

because of its molecular characteristics (19). Homocysteine may jeopardize the vascular 

endothelium integrity by its ability to induce auto-oxidation of cholesterol and promote 

thrombosis (20). Kang et al. (21) showed that patients with coronary artery disease (CAD) 
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had significantly higher levels of homocysteine compared to those in the control group. The 

three enzymes involved with homocysteine metabolism work together and depend on the 

cellular concentration of SAM. MS or BHMT each metabolize approximately 27% of 

homocysteine, respectively, whereas the other 46% is transsulfurated by CBS (22). The 

regulatory control of SAM already demonstrated with MTHFR also inhibits BHMT from 

supplying methyl groups for methionine synthesis. An elevated SAM concentration also 

activates CBS to shunt homocysteine through the irreversible transsulfuration pathway 

(22,23). 

Homocysteine has a vital role in the relationship between the folate-dependent one-

carbon cycle and methyl group metabolism. It has been implicated in cardiovascular disease 

and the regulation of homocysteine metabolism depends on the cellular concentration of 

SAM and the enzymes involved with its metabolism. Homocysteine is either catabolized 

through the transsulfuration pathway or remethylated to form methionine and eventually 

form SAM, an important metabolite involved in the transmethylation of numerous biological 

compounds. 

Methyl Group Metabolism 

Methionine continues through the transmethylation pathway when ATP is hydrolyzed 

by the enzyme methionine adenosyltransferase (MAT) to release the adenosyl group that 

attaches to the sulfur of methionine, forming SAM (24). SAM can be seen as a function of 

methionine availability because of its biological activity and its ability to donate methyl 

groups in transmethylation reactions. It is found in both the cytosol and the mitochondria; 

however most of SAM-dependent transmethylation reactions take place in the cytosol (15). 

SAM is a biologically important metabolite that donates methyl groups in over 100 

reactions. Approximately 99% of SAM is demethylated in a multitude of reactions and 1 % is 

decarboxylated for polyamine biosynthesis and eventually converted back to methionine. 

SAM is an active metabolite in that it helps to control the interactions between folate-

dependent one-carbon cycle and methyl group metabolism. As previously stated, when SAM 

is in high concentration, it acts as an inhibitor to the enzyme BHMT to slow the production 

of methionine as well as inhibiting MTHFR activity to prevent the availability of 5-methyl-
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THE for the remethylation of homocysteine. High SAM concentrations also facilitate the 

disposal of homocysteine through the transsulfuration pathway activating CBS and 

normalizing homocysteine concentration (25). As a universal donor of methyl groups, SAM 

donates its activated methyl group via a variety of methyltransferases and is converted to S-

adenosylhomocysteine (SAH) (Figure 1.3). The ratio of SAM to SAH is indicative of the 

transmethylation potential due to the ability of SAH's potent inhibition of transmethylation 

reactions (26). A study by Caudill et al. (27) examined the SAM: SAH ratio and found there 

was a positive correlation between plasma homocysteine concentration and SAH levels in a 

CBS enzyme knockout mouse model. SAH may be a reliable index of transmethylation 

potential versus increased SAM concentration or -the SAM: SAH ratio and that plasma 

homocysteine could be a good indicator of disturbance within methyl group metabolism. 

Products from the transmethylation reaction are too numerous to list, but the enzymes for 

these reactions are categorized into two groups: those involved in biosynthesis and 

degradation of bioactive amines, and those involved in bulk metabolic transformations (28). 

Major examples of the first group include epinephrine, phosphatidylcholine, and the 

modulation of DNA and RNA (29). An example of the second group involves creatine 

synthesis that constitutes the majority (~75%) of transmethylatzon reactions. 

The products from the transmethylation reaction that occur in methyl group 

metabolism convey the importance of this pathway in the health process. Regulation is 

essential to maintain the SAM : SAH ratio to optimize the transmethylation potential; 

fortunately, there is an enzyme available to perform this function. 

Properties of Glycine N-metlayltransferase 

The enzyme glycine N-methyltransferase (GNMT) uses the methyl group from SAM 

in the transmethylation reaction to produce sarcosine, a compound synthesized by that has no 

known metabolic function (Figure 1.3) (30). GNMT utilizes glycine as a methyl acceptor 

(31) and comprises about 0.9-3.0% of soluble protein in the liver (32). GNMT was first 

discovered in 1960 by Blumenstein and Williams and is known to be part of a system that 

regulates the SAM: SAH ratio (33). SAH is the product of SAM demethylation and has an 

instrumental role in regulation of the transmethylation reaetion from its ability to inhibit 
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almost all of the methyltransferase enzymes. However, GNMT is not affected by SAH and 

optimizes the transmethylation potential (26). Heady and Kerr (34) found that the absence of 

GNMT activity in rabbit fetal liver and tumor tissue led to elevated levels of tRNA 

methyltransferase compared to normal adult tissue. The GNMT gene expression is also 

down-regulated in human hepatocellular carcinoma (HCC) cell lines as well as in liver tissue 

of HCC patients (35,36). GNMT has its own regulation, but in a different manner than other 

methyltransferases. Cook and Wagner (37) found that 5-methyl-THF can tightly bind 

GNMT but the function of this action was uncertain. Further research has shown that 

GNMT's highly specific binding to 5-methyl-THF serves as an allosteric inhibitor of GNMT 

activity and can occur in 5-methyl-THF concentrations that are similar to what is found in the 

liver (5.1 x 10-~ M showed virtually complete inhibition) (30). To summarize this regulation, 

low SAM levels result in increased MTHFR activity, thereby producing 5-methyl-THF that 

inhibits GNMT and allow SAM concentrations to increase and participate in biologically 

important transmethylation reactions (Table 11). When SAM concentrations increase 

beyond metabolic needs, it binds to MTHFR and inhibits its activity, thus decreasing the 

concentration of 5-methyl-THF. This action allows unbound GNMT to dispose of SAM and 

lower the SAM concentration. 

Active GNMT is composed of four subunits with a denatured molecular weight of 

31,500 kD, determined using the SDS-PAGE technique (31). Cell culture studies have 

shown that unbound GNIVIT monomers in the cytosol are covalently phosphorylated by a 

cAMP-dependent protein kinase and ATP, forming a tetramer and producing a ~2 fold 

increase in enzymatic activity (38). The disassociation of the tetrameric traits produces a loss 

in activity and the monomer units can then be transported into the nucleus and bind to 

chromatin (39). Raha et al. (40) discovered that GNMT is also responsible for activity 

associated with the cytochrome P-4501 A 1 (CYP 1 A 1) system within the nuclei of hepatoma 

H4IIE cell line. Formerly known as 4S polycyclic aromatic hydrocarbon (PAH)-binding 

protein, GNMT in dimeric form in the nucleus acts as a PAH-binding protein that has the 

ability to mediate the induction of CYP 1 A 1 (41). GNMT plays an important role in methyl 

group metabolism and an uncontrolled- increase in its activity can perturb folate-dependent 

one-carbon and methyl group metabolism as shown later in this thesis. 
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Table 1.1 Regulation and perturbations of enzymes 
in folate and methyl group metabolism 

Enzyme 

BHMT~ 

CBS 

GNMT 

MS 

MTHFR 

Influences on Activity 

Decrease: high SAM concentration; increased protein intake 

Increase: high SAM concentration; glucocorticoids 
Decrease: B6 deficiency; insulin; genetic polymorphisms 

Increase: high SAM concentration; increased protein intake; 
retinoids; glucocorticoids; growth hormone 

Decrease: high 5-methyl-THF concentration 

Decrease: Bl2 deficiency; increased protein intake; genetic 
polymorphism 

Decrease: high SAM concentration; B2 deficiency; genetic 

polymorphisms 

Abbreviations: BHMT, betaine:homocysteine methyltransferase; CBS, cystathionine ~3—
synthase; GNMT, glycine N-methyltransferase; MAT, methionine adenosyltransferase; MS, 
methionine synthase; MTHFR, 5,10-methylene-THF-reductase. 

Homocysteine Metabolism and the Transsiclfi~ration Pathway 

During basal metabolic conditions, homocysteine cycles 1.5-2.0 times through the 

remethylation pathway (19). The enzyme SAH hydrolase catalyzes the hydrolysis of SAH to 

form homocysteine and adenosine (Figure 1.3). Because this enzyme is reversible and the 

equilibrium favors SAH synthesis, the rate of SAH hydrolysis depends on the removal of 

homocysteine either through remethylation or transsulfuration. As explained earlier, SAH is 

a potent inhibitor of methyltransferases and the SAM: SAH ratio is often used as an indicator 

of methylation capacity (26). As the ratio increases due to high SAM levels, CBS is 

activated to reduce homocysteine and normalize the SAM: SAH ratio (25). The complete 

transsulfuration pathway is not as wide spread in the body as folate-dependent one-carbon 

and methyl group metabolism and occurs only in the liver, kidneys, small intestine, and 

pancreas. When the B6-dependent enzyme CBS is activated by a high SAM concentration, 
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the irreversible CBS enzyme attaches a serine to homocysteine to form cystathionine. CBS 

activity is also dependent on another factor; cell culture experiments have shown that heme 

produces an oxidative state, which increases CBS activity (42). The B6-dependent enzyme y-

cystathionase cleaves cystathionine into 3 molecules: cysteine, a-ketobutyrate, and 

ammonium. Cysteine can be oxidized to taurine, used in the synthesis of glutathione, or as a 

precursor of pyruvate. Ammonium is excreted from the body through the kidneys and a-

ketobutyrate is an intermediate substrate that is converted to propionyl-CoA and then to 

succinyl-CoA in the citric acid cycle. 

Homocysteine is the branch point in folate-dependent one-carbon and methyl group 

metabolism and is either remethylated or undergoes transsulfuration in response to the 

cellular concentration of SAM. A few examples of the disruption of homocysteine 

metabolism have been demonstrated to show the relevance of homocysteine in response to 

health and disease. The regulation of these two interrelated pathways is important to address 

and should be considered in relation to diseases that may occur from disruptions. 

Disruption of Folate and Methyl Group Metabolism 

Under basal conditions, folate-dependent one-carbon and methyl group metabolism is 

tightly regulated and the body remains in a healthy state. ,When this system is perturbed, 

various diseases may occur; therefore, it is important to study the multitLide of genetic and 

nutritional factors as well as pharmacological agents that can perturb its controlled 

environment. Folate and its role in methyl group metabolism is important in understanding 

how a disruption in the pathway can produce various detrimental outcomes. Table l . l 

summarizes some of _the enzymes affected by disturbances in the pathway. 

Genetic Enzyme ~'olymo~p/zisms 

Genetic enzyme polymorphisms are present in folate-dependent one-carbon and 

methyl group metabolism and these disruptions can cause health problems if left uncontrolled 

or perturbed by a nutritional deficiency. MS, CBS, and MTHFR enzyme polymorphisms 

have been extensively researched and different variants within each, enzyme are established. 
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A common and extensively researched enzyme polymorphism that is found in folate 

metabolism is the enzyme MTHFR. This genetic polymorphism is caused by the C —~ T 

substitution at base pair 677 and causes a valine to substitute for an alanine, resulting in 

reduced stability under increases in temperature; therefore, thermolability is a fundamental 

characteristic of this polymorphism (43). This autosomal recessive mutation is characterized 

by hyperhomocysteinuria and hyperhomocysteinemia. Clinically, people with severe cases 

develop neurological abnormalities and atherosclerotic damage and often early death, while , 

mild cases can be troubled with clinical vascular disease in adulthood (44}. In a case study 

by Kanwar et al. (45), a mentally retarded 10-year-old chicd with homocystinuria exhibited 

no hepatic MTHFR activity. Additionally, the patient displayed distortions in the endothelial 

cells, deleterious changes in the brain and liver tissue, and demyelination of striated muscle 

and kidneys. A study investigating CAD cases showed that 6 out of 21 patients had 

thermolabile MTHFR that resulted in decreased enzyme activity. Of these 6 patients, 2 had 

high plasma homocysteine levels and suboptimal folate levels (44). A study by Silaste et al. 

(46) found that folate supplementation improved plasma homocysteine levels; healthy 

women (22-57 y) participated in a 5-week crossover study in which they consumed high (6,00 

µg/day) and Iow (220 µg/day) folate diets. These women were tested for polymorphic 

enzymes and those with the MTHFR mutation on the high folate diet showed a decrease in 

plasma homocysteine levels but a continued suboptimal plasma folate level. The high folate 

diet did not affect plasma homocysteine levels of people with CBS or MS polymorphisms. A 

study performed by Kluijt~nans et al. (47) also examined the three enzyme polymorphisms 

and their different variants in 452 young adults. The frequency of the enzyme 

polymorphisms MTHFR (2 types 677TT and 1298CC) occurred 13.5% and 10.6% 

respectively, MS (275 6GG and 66GG) occurred 2.0% and 29.6% respectively, and CBS (1 

type 844ins68 WI) occurred 17.7%. Of these enzyme deficiencies, MTHFR 677TT was the 

only one to have an increase in subjects' plasma homocysteine concentration and a decrease 

in serum folate levels. The authors conclude that 35% of the variability involved in plasma 

homocysteine concentration could be attributed to folate and B 12 concentrations, implicating 

the importance of nutrition on human health, even at a young age. 
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The MS enzyme polymorphism has been researched for its. impact on the 

remethylation of homocysteine in methyl group metabolism but has not been shown to have 

the detrimental impact that MTHFR and CBS polymorphisms display (4$,49). However, the 

genetic polymorphism of the CBS enzyme does perturb homocysteine metabolism and can be 

detrimental. The CBS enzyme deficiency is caused by an autosomal recessive mutation and 

is the most common cause of hyperhomocysteinemia with fasting plasma homocysteine 

levels as high as 200 µmol/L. These elevated levels cause mental retardation, Marfan-like 

habits, osteoporosis, ectopic lentis, and thromboembolic disease. A CBS knockout mouse 

model using a homozygous mutant exerted a dramatic increase in plasma homocysteine 

levels and increased SAH concentration in various tissues compared to heterozygous wild-

type mice (50). A clinical report by Yaghmai et al. (51) described the symptoms of a 10-

year-old patient with CBS deficiency that was on an unrestricted diet and was undergoing 

betaine therapy to treat hyperhomocysteinemia. Methionine toxicity developed and she 

suffered from cerebral edema, pancreatitis, and mild bradycardia. After stopping the betaine 

therapy, restricting methionine intake and supplementing her diet with folate, B6, and B 12, her 

plasma methionine and homocysteine levels returned to baseline and all adverse symptoms 

disappeared. 

The conversion of homocysteine to cystathionine occurs in the brain and impaired 

CBS activity and folate deficiency in brain cells may cause accumulated homocysteine to 

promote excitotoxicity, stimulating N-methyl-D-aspartate receptors and damaging neuronal 

DNA. Such conditions may disrupt brain development in children and could have a role in 

neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, 

and depression (52). 

There are genetic enzyme polyTmorphisms present throughout the one-carbon cycle 

and methyl group metabolism. The lack of activity in the enzymes CBS and MTHFR has 

been implicated in increased homocysteine concentrations in the plasma and urine, which are 

correlated to a heightened risk for cardiovascular disease. Researching the influence of diet 

on genetic enzyme polymorphisms in ongoing and is seen as an important aspect in 

preventing disease. 
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Nutritional Deficiencies 

If homocysteine metabolism is disrupted by a genetic disorder, SAH concentration 

increases, perturbing the SAM: SAH ratio and disrupting the cellular methylation potential 

(26). A deficiency in folate, methionine, choline, or B12 could exacerbate this situation in the 

remethylation pathway of homocysteine while a deficiency in B6, which aids in the activity 

of CBS and y-cystathionase could decrease the shuttling of homocysteine through the 

transsulfuration pathway (53). 

Hyperhomocysteinemia has been identified as an independent risk factor for vascular 

disease and multiple studies have looked at folate intake and its influence on plasma 

homocysteine concentration. A study by Pancharuniti et al. (54) compared 108 white males 

with angiographically demonstrated CAD to age-related controls and concluded that an 

increased risk of CAD was present in patients with the lowest level of plasma folate 

concentration, which was inversely related to their plasma homocysteine concentration. In 

addition, vitamin B12 plasma levels had no correlation with CAD. Van Oort et al. (55) 

demonstrated that folate supplementation in 316 healthy men and women (50-75 y) 

decreased plasma homocysteine levels in adose-dependent fashion with 392 µg/day as the 

lowest dose to produce a positive homocysteine reduction. Brouwer et al. (56) examined the 

impact of natural folate versus folic acid supplements in healthy men and women (18-45 y). 

The subjects received a dietary intake of either a placebo and low folate diet 0210 µg/day), a 

placebo and high folate diet mainly from vegetables and citrus fruit 0560 µg/day), or a folic 

acid supplement and low folate diet 0560 µg/day). After 4 weeks, showed that plasma 

folate status improved and plasma homocysteine concentrations decreased in the high 

folate/folic acid groups compared to the control group. These results indicate that dietary 

folate and folic acid supplements are both able to reduce plasma homocysteine levels. 

The lack of dietary methyl groups has been linked to tumor induction and is well 

documented. The lipotropes methionine, choline, and folate are essential to the folate-

dependent one carbon pool and methyl group metabolism and when a diet is deficient in 

these nutrients, it will induce tumors without the aid of an outside carcinogen (57). A study 

by Miller et al. (58) examined the folate-repletion activity in rats that were fed a folate-

deficient diet for 4 weeks. There was a 10-fold increase in plasma homocysteine 
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concentration and a 3 -fold decrease in hepatic SAM levels in folate-deficient rats compared 

to the control group. The authors attribute these findings to an impaired remethylation 

capacity and inactivation of CBS activity. Interestingly, folate repletion returned the 

homocysteine levels to baseline correlating to the incremental folate doses given. 

Additionally, ethionine injections were administered to the folate-depleted rats for 3 days to 

test the efficacy of inducing homocysteine catabolism without increasing SAM. Ethionine 

was converted to S-adenosylethionine and caused a 300% increase in CBS activity and 

lowered the plasma homocysteine levels. 

Cook et al. (59) demonstrated the impact of rats fed amethyl-deficient diet in which 

homocysteine was added in place of methionine in the diet. Weights significantly. decreased 

throughout the 5 weeks in rats on the deficient diet even though both groups consumed 

similar amounts of diet. The livers of the methyl-deficient group had an increased fat 

concentration, decreased GNMT activity, slightly decreased SAM concentration, and SAH 

concentration was elevated as homocysteine was rapidly converted to SAH. . The treatment 

group ingested the control diet for the Last week and showed an increase in GNMT activity. 

The perturbations seen in methyl group metabolism from amethionine-deficient diet has 

implications on DNA that affect the entire health process. The disruption of SAM's ability to 

methylate DNA will cause progressive dysregulation of DNA methylation, priming the stage 

for tumor promotion (60). 

A deficiency in the dietary intake of the folate can have a profoLtnd effect on the 

folate-dependent one-carbon pool and methyl group metabolism. The preceding paragraphs 

examined the importance of dietary folate or folic acid in the regulation of homocysteine 

metabolism and its inverse relationship to plasma homocysteine concentration. Nutritional 

deficiencies of the lipotropes methionine and choline in addition to low folate intake can 

disrupt enzyme activity and the cellular concentration of metabolites within the interrelated 

cycles and are implicated in hepatocarcinoma. When additional perturbations are present, the 

risk of disease is heightened. Whether the disruption comes from an exogenous source (i.e., 

drugs, alcohol) or comes from endogenous conditions (i.e., hormones), the harmful 

fluctuations to folate and methyl group metabolism can further exacerbate the already taxed 

pathway. 



www.manaraa.com

~8 

Hormonal Modulation 

Fluctuations in hormones influence enzyme activity and can perturb coenzymes 

within methyl group metabolism. Glucocorticoids are hormones secreted from the adrenal 

cortex that elevate blood glucose and can mediate adiabetic-like state. The induction of 

diabetes or the application of glucocorticoids may have an effect on CBS activity and its 

protein levels. Cell culture research using the H4IIE cell line showed that synthetic 

glucocorticoids increased CBS enzyme protein and mRNA levels while insulin inhibited this 

effect, providing insight that insulin may have an influential role in homocysteine 

metabolism (61). Ratnam et al. (61)used a streptozotocin-induced diabetic rat model that 

exhibited increased hepatic CBS activity and mRNA protein that was reversed by the 

application of insulin; the induction of CBS activity and mRNA was not found in the 

kidneys. Hyperglucagonemic rats (which displayed increased CBS activity and protein 

abundance) exhibited no change in hepatic methionine concentration but there was a 

significant decrease in both plasma and hepatic homocysteine levels (62). The diabetic drug 

troglitazone, which enhances insulin activity, was administered to lean and overweight rats 

and the drug may have aided in the hepatic uptake of homocysteine from the plasma, 

decreasing plasma homocysteine concentrations and causing a dramatic increase in hepatic 

CBS enzyme activity in both rat groups (63). However, these homocysteine reductions may 

not occur in diabetic cases where renal insufficiency is present, a condition strongly 

associated with hyperhomocysteinemia (64). 

While the enzyme GNMT is found predominately in the periportal region of the liver, 

its prevalence in methyl group regulation is also found in the proximal convoluted tubules of 

the kidney and the exocrine pancreas of both rabbit and rat, regions that are known for 

gluconeogenic activity (65,66). In alloxan-induced diabetic sheep, the activity of GNMT 

was significantly increased as well as y—cystathionase compared to the control, suggesting an 

exaggerated homocysteine catabolism in a diabetic state (67). Jacobs et al. (62) showed 

similar conclusions using hyperglucagonemic rats that resulted in increased hepatic GNMT, 

CBS, and ~—cystathionase enzyme activity, concluding that glucagon increases intracellular 

concentrations of CAMP and was responsible for the increased CBS mRNA levels. Rowling 

and Schalinske (68) showed in cell culture that the treatment of the H4IIE cell line with 
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cAMP appeared to attenuate glucocorticoid-mediated induction of GNMT protein 

abundance. In the rat model, the synthetic glucocorticoid dexamethasone induced GNMT 

activity and- protein abundance as it decreased plasma homocysteine levels versus the control 

treatment. Aida et al. (~9) found that the administration of growth hormone on 

hypophysectomized male mice reduced GNMT mRNA expression whereas female mice 

were not affected as much, indicating a difference between male and female mice while 

growth hormone is seen as another influence on GNMT regulation. 

The regulation of enzymes in methyl group metabolism ultimately affects the cellular 

concentration of metabolites that are involved in the creation of biological products. 

Whether it involves GNMT activity in regards to SAM in the transmethylation reaction or 

homocysteine metabolism in relation to CBS and -cystathionase activity, the influence of 

hormones to these enzymes in a derogatory manner can perturb the pathway and may be 

Linked to cardiovascular disease and cancer. Disruptions to the folate-dependent one-carbon 

pool and methyl group metabolism from the addition of exogenous factors can also be 

implicated in the development of disease. 

Dracg-Nutrient Interactions 

The classic folate antagonist drug model is found in the area of cancer treatment. 

Folate analogs are often given to slow the increased rate of DNA synthesis in cancerous cells. 

An example of this is methotrexate, an anticancer drug that inhibits the conversion of DHF to 

THF. The use of methotrexate results in an intracellular depletion of folate metabolites and 

reduced the carbon flow from 5-methyl-THF to homocysteine (70). 

The application of antiepileptic drugs has frequently exhibited low plasma folate and 

high plasma homocysteine concentrations. Apeland et al. (71) found a decrease in plasma 

vitamin B6 concentration in patients taking antiepileptic drugs; implying abnormal 

homocysteine metabolism and increasing the chance of diseases associated with high 

homocysteine concentrations. Pregnant women taking antiepileptic drugs have an increased 

chance of NTDs and Weber et al. (72) has shown the importance. of folic acid 

supplementation as an effective preventative measure to this population. 
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Another factor that results in perturbations to methyl group metabolism is ethanol 

intake. In long-term administration, it has been shown that as the catabolism of methionine 

is increased by decarboxylation, leading to decreased SAM levels, and increased BHMT 

activity concurrent with decreased MS activity. GNMT activity decreased but only in the 8t" 

week of ethanol intake versus weeks 2 and 4 (73). After a single dose of ethanol (3 gikg 

BW), hepatic SAM concentration decreased in rats concurrently with inhibited CBS activity; 

enzymes involved in glutathione production were inhibited and decreased hepatic glutathione 

concentration did not return to control levels for 24 hr (74). 

The influence of drugs and alcohol on folate and methyl group metabolism is 

profound. The overconsumption of alcohol is well known for its effect on the liver and 

antiepileptic drugs decrease plasma folate levels, subsequently leading to increased plasma 

homocysteine levels and the increased risk for NTDs. There are other drugs that are 

prescribed by doctors that have an impact on methyl group metabolism and the folate pool 

that are not as well known. Retinoids used in cancer treatment and dermatology are 

emerging as one of these such drugs. 

Retinoid Implications 

Retinoids are derived from the fat-soluble vitamin A. Vitamin A is important in 

growth and overall health but is considered toxic in high doses. A study by Fell and Steele 

(75) found that the intake of 1000 IU (0.3 mg) of retinol acetate/gm diet for 10-14 days 

suppressed MTHFR activity, resulting in decreased 5-methyl-THF levels and decreased 

SAM concentrations. The vitamin A derivative 13-cis-retinoic acid (CRA), which is more 

biologically active than retinol acetate, can increase serum triglyceride levels and hepatic 

lipids while perturbing methyl group metabolism by reducing hepatic SAM concentration 

and affecting the SAM: SAH ratio (76). However, CRA's increased biological activity has 

made it an effective agent in the dermatology field. CRA's success in the treatment of 

common skin disorders such as severe acne and psoriasis has produced synthetic retinoids 

like Accutane0 and Tegison0 and its use is widespread in dermatology. The frequent causes 

of acne are reduced from retinoid facilitation on the de-differentiation of sebaceous glands, 

sebum gland production suppression, and promotion of shedding lceratinocytes (77). These 
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drugs are taken orally and are given when topical treatments do not work. The number of 

retinoid prescriptions has steadily increased in the past ten years as doctors are prescribing 

therapeutic retinoids for moderate acne as well (78). Oral retinoids are administered in doses 

ranging from 0.5-2.0 mg/kg BW (2-7 µmol/kg BW) for an average of 4-5 months. Adverse 

effects are seen in 100% of users in the form of skin and lip dryness, eczema, and hair 

shedding which subside within 3 weeks of treatment. Plasma triglyceride levels as well as 

cholesterol has been shown to increase with synthetic retinoid use, therefore patients are 

screened before starting retinoid therapy and at 2-4 week intervals (77). The most 

biologically active retinoid is all-trans-retinoic acid (ATRA) and is used clinically in the 

treatment of acute promyelocytic leukemia in a dosing regime similar to CR.A. Rowling and 

Schalinske (79) found an increase in GNMT activity and protein abundance after 10 days of 

ATRA treatment (30 µmol/kg BW) in rats. Retinoids in the form of retinyl palmitate, CR.A, 

and ATRA have all been shown to induce both GNMT activity and protein abundance and 

caused DNA hypomethylation in rats when administered in pharmacological doses for a short 

time period (10 d) (80). Even though the folate-dependent one-carbon pool and methyl 

group metabolism is found in the pancreas and kidneys, McMullen et al. (81) did not show 

increases in GNMT activity or protein abundance in rats in these two tissues as seen in the 

Iiver after ATRA application (30 µmol/kg BW for 10 d). There was also an increase in 

GNMT activity in male versus female rats even though both groups were dosed and treated 

in the same manner. 

Researching the impact that retinoids have on methyl group metabolism is in its 

initial stages and the overall outcome remains to be seen. A relationship between the 

pharmacological dose of ATRA on rats and the doses given in clinical settings has not been 

established. The studies in Chapter 2include adose-response and atime-course study of 

ATRA's affect on folate and methyl group metabolism in an attempt to bridge this gap. The 

folate-dependent one-carbon pool and methyl group metabolism's involvement in NTDs, 
cancer, and cardiovascular disease is prevalent but the mechanisms in the progression of 

these diseases are not completely known. Recently, research has shown that hormones 

involved in glucose metabolism have an effect on methyl group metabolism and this 

relationship may help explain anomalies within both pathways. Disruption to methyl group 
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metabolism by ATRA has shown to be an effective model in understanding this pathway and 

may someday provide insight to the diseases and disorders associated with the folate-

dependent one carbon pool and methyl group metabolism. 

Literature Cited 

1. Scott, J.M. (1995) Folate and neural tube defects. In: Folate in Health and Disease. 
(Bailey, L.B. ed.) pp. 329-360. Marcel Dekker, New York, New York. 

2. Food and Nutrition Board National Academy of Sciences. (1999) Dietary reference 
intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B 12, pantothenic acid, 
biotin, and choline. 11 t" ed. National Academy Press, Washin ton, D. C . g 

3. Committee on Genetics (1999) Folic acid for the prevention of NTD. Pediatrics 104: 325-
327. 

4. Boddie, A.M., Dedlow, E.R., Nackashi, J.A., Opalko, F.J., Kauwell, G.P.A., Gregory, 
J.F. &Bailey, L.B. (2000) Folate absorption in women with a history of neural tube 
defect-affected pregnancy. Am. J. Clin. Nutr. 72 : 154-15 8 . 

5. Bailey, L.B. &Gregory, J.F. (1999) Folate metabolism and requirements. J. Nutr. 129: 
770-782. 

6. Scott, J.M. &Weir, D.G. (1998) Folic acid, homocysteine, and one-carbon metabolism: a 
review of the essential biochemistry. J. Cardio. Risk. 5: 223-227. 

7. Lucocl{, M. & Daskaiakis, I. (2000) New perspectives on folate status: a differential role 
for the vitamin in cardiovascular disease, birth defects and other conditions. Br. J. 
Biomed. Sci. 57: 254-260. 

8. McDowell, L.R. (2000) Folacin. In: Vitamins in Animal and Human Nutrition. 2nd ed. pp. 
479-521. ISU Press, Ames, Iowa. 

9. Scott, J. M. (1999) Folate and vitamin B 12. Proc. Nutr. Soc. 58: 441-448. 

10. Finkelstein, J.D., Kyle, W.E., Harris, B.J. (1971) Methionine metabolism in mammals: 
regulation of homocysteine methyltransferase in rat tissue. Arch. Biochim. Biophys. 146: 
84-92. 

11. Kutzbach, C. & Stokstad, E.L.R. (1967) Feedback inhibition of methylene-
tetrahydrofolate reductase in rat liver by S-adenosylmethionine. Biochim. Biophys. Acta. 
139: 217-220. 



www.manaraa.com

23 

12. Wagner, C. (1995) Biochemical role of folate in cellular metabolism. In: Folate in health 
and disease. (Bailey, L.B. ed.) pp. 23-42. Marcel Dekker, New Yorlc, New York. 

13. Shane, B. & Stokstad, E.L.R. (1985) Vitamin B12-folate interrelationships. Ann. Rev. 
Nutr. 5: 115-141. 

14. Jencks, D.A. &Matthew, R.G. (1987) Allosteric inhibition of methylenetetrahydrofolate 
reductase by adenosylmethionine. J. Biol. Chem. 262: 2485-2493. 

15. Finkelstein, J. D. (1990) Methionine metabolism in mammals. J. Nutr. Bloch. 1:228-237. 

16. Newberne, P.M. &Rogers, A.E. (1986) Labile methyl groups and the promotion of 
cancer. Ann. Rev. Nutr. 6 : 407-43 2. 

17. Huang, R.-F., S., Hsu, Y.-C., Lin, H.-L. &Yang, F.L. (2001) Folate depletion and 
elevated plasma homocysteine promote oxidative stress in rat livers. J. Nutr. 131: 33-38. 

18. Selhub, J. &Miller, J.W. (1992) The pathogenesis of homocysteinemia: interruption of 
the coordinate regulation by S-adenosylmethionine of the remethylation and 
transsulfuration of homocysteine. Am. J. Clin. Nutr. 55: 131-138. 

19. Selhub, J. (1999) Homocysteine metabolism. Annu. Rev. Nutr. 19: 217-246. 

20. Clarke, R., Daly, L., Robinson, K., Naughten, E., Cahalane, S., Fowler, B., &Graham, I. 
(1991) Hyperhomocysteinemia: an independent risk factor for vascular disease. N. Engl. 
J. Med. 324: 1149-1155. 

21. Kang, S.-S., Wong, P.W.K., Cook, H.Y., Norusis, M. &Messer, J.V. (19$6) Protein-
bound homocyst(e)ine. Apossible risk factor for coronary artery disease. J. Clin. Invest. 
77: 1482-1486. 

22. Finkelstein, J.D &Martin, J.J. (1984) Methionine metabolism in mammals: distribution 
of homocysteine between competing pathways. J. Biol. Chem. 259: 9508-9513. 

23. Finkelstein, J.D. &Martin, J.J. (1984) Inactivation of betaine-homocysteine 
methyltransferase by adenosylmethionine and adenosylethionine. Biochem. Biophys. 
Res. Comm. 118: 14-19. 

24. Mudd, S.H. (1963) Activation of methionine by transmethylation. J. Biol. Chem. 238: 
2156-2163. 

25. Finkelstein, J.D., Kyle, W.E., Martin, J.J. &Pick, A.-M. (1975) Activation of 
cystathionine synthase by adenosylmethionine and adenosylethionine. Biochem. Biophys. 
Res. Comm. 66 : 81-87. 



www.manaraa.com

24 

26. Cantoni, G.L. &Chiang, P.K. (1980) The role of S-adenosylhomocysteine and S- 
adenosylhomocysteine hydrolase in the control of biological methylations. In: Natural 
Sulfur Compounds. (Cavallini, D., Gaull, G.E. & Zappia, V., eds.) pp. 67-80. Plenum 
Press, New York, New York. 

27. Caudill, M.A., Wang, J.C., Melnyk, K.S., Pogribny, I.P., Jernigan, S., Collins, M.D., 
Santos-Guzman, J., Swendseid, M.E., Cogger, E.A. &James, S.J. (2001) Intracellular S-
adenosylhomocysteine concentration predict global DNA hypomethylation in tissues of 
methyl-deficient cystathionine ~3-synthase heterozygous mice. J. Nutr. 131: 2811-2818. 

28. Ogawa, H., Gomi, T., Takusagawa, F. &Fuj ioka, M. (1998) Structure, filnction, and 
physiological role of glycine N-methyltransferase. Inter. J. Biochem. Cell Biol. 30: 13-26. 

29. Chiang, P.K., Gordon, R.K., Tal, J., Zeng, G.C., Doctor, B.P. Pardhasaradhi, K., & 
McCann. P.P. (1996) S-adenosylmethionine and methylations. FASEB J. 10: 471-480. 

30. Wagner, C., Briggs, W.T., &Cook, R.J. (1985) Inhibition of glycine N-methyltransferase 
activity by folate derivatives: implications for regulation of methyl group metabolism. 
Biochem. Biophys. Res. Comm. 127: 746-752. 

31. Ogawa, H. &Fuj ioka, M. (1982) Purification and properties of glycine N-
methyltransferase from rat liver. J. Biol. Chem. 257: 3447-3452. 

32. Kerr, S.J. (1972) Competing methyltransferases. J. Biol. Chem. 247: 4248-4252. 

3 3 . Kerr, S.J. &Heady, J.E. (1974) Modulation of t~:NA methyltransferase activity by 
competing enzyme systems. Adv. Enzyme Regul. 12 : 103 -117. 

34. Heady, J.E. &Kerr, S.J. (1975) Alteration of glycine ~ methyltransferase activity in 
fetal, adult, and tumor tissue. Can. Res. 3 5 : 640-643 . 

35. Chen, Y.-M.A., Shio, J.-Y.A., Tzeng, S.J., Shih, L.-S., Chen, Y.-I., Lui, W.-Y., &Chen, 
P.-H. (1998) Characterization of glycine N-methyltransferase expression in human 
hepatocellular carcinoma. Int. J. Cancer 75: 787-793. 

3 6. Chen, Y.-M.A., Chen, L. -Y., Wong, F. -H, Lee, C . -M, Chang, T. -J., and Yang-Feng, T.L. 
(2000) Genomic structure, expression, and chromosomal localization of the human 
glycine N-methyltransferase gene. Genomics 66: 43-47. 

3 7. Cook, R.J. &Wagner, C. (1984) glycine N-methyltransferase is afolate-binding protein 
in rat liver cytosol. Proc. Natl. Acad. Sci. 81 : 363 1-3634. 



www.manaraa.com

25 

38. Wagner, C., Decha-Umphai, W. ~ Corbin, J. (1989) Phosphorylation modulates the 
activity of gl~cine N-methyltransferase, afolate-binding protein. J. Bio Chem. 264: 963 8-
9642. 

39. Krupenko, N.I. &Wagner, C. (1997) Transport of rat liver glycine N-methyltransferase 
into rat liver nuclei. J. Biol. Chem. 272: 27140-27146. 

40. Raha, A. Joyce, T., Gusky, S. &Bresnick, E. (1995) Glycine N-methyltransferase is a 
mediator of cytochrome P4501A1 gene expression. Arch. Biochem. Biophys. 322: 395-
404. 

41. Bhat, R. & Bresnick, E. (1997) Glycine N-methyltransferase is example of functional 
diversity. J. Biol. Chem. 272: 21221-21226. 

42. Taoka, S., Ohja, S., Shan, X., Kruger, W.D.& Banerjee, R. (1998) Evidence for heme-
mediated redox regulation of human cystathionine ~-synthase activity. J. Biol. Chem. 
273: 25179-25184. 

43. Frosst, P., Blom, H.J., Milos, R., Goyette, P., Sheppard, C.A., Matthews, R.G., Boers, 
G.J.H., den Heijer, M., Kluijtmans, L.A.J., van den Heuvel, L.P. & Rozen, R. (1995) A 
candidate genetic risk factor for vascular disease: a common mutation in 
methylenetetrahydrofolate reductase. Nat. Genet. 10 : 111-113 . 

44. Kang, S.-S., Wong, P.W.K, Zhou, J. Sora, J., Lessick, M., Ruggie, N. & Gvicevich, G. 
(1,98.8) Thermolabile methylenetetrahydrofolate reductase in patients with coronary artery 
disease. Metabolism 37: 611-613 . 

45. Kanwar, Y.S., Manaligod, J.R. &Wong, P.W.K. (1976) Morphologic studies in a patient 
with homocystinuria due to 5,10-methylene tetrahydrofolate reductase deficiency. Pediat. 
Res. 10: 598-607. 

46. Silaste, M.-L., Rantala, M., Sampi, M., Alfthan, G., Aro, A. & Kesaniemi, Y.A. (2001) 
Polymorphisms of key enzymes in homocysteine: methionine affect diet responsiveness 
of plasma homocysteine in healthy women. J. Nutr. 131: 2643-2647. 

47. Kluijtmans, L.A.J., Young, I.S., Boreham, C.A., Murray, L., McMaster, D., McNulty, H., 
Strain, J.J., McPartlin, J., Scott, J.M. &Whitehead, A.S. (2003} Genetic and nutritional 
factors contributing to hyperhomocysteinemia in young adults. Blood 101: 2483-2488. 

48. Chen, J., Stampfer, M.J., Ma, J., Selhub, J., Malinow, M.R., Hennekens, C.H. &Hunter, 
D.J. (2000) Influence of a methionine synthase (D919G) polymorphism on plasma 
homocysteine and folate levels and relation to risk of myocardial infarction. 
Atherosclerosis 154: 667-672. 



www.manaraa.com

26 

49. Klerk, M., Lievers, K.J.A., Kluijtmans, L.A.J., Blom, H.J., den Heijer, M., Schouten, 
E.G., Kok, F.J. &Verhoef, P. (2003) The 2756A>G variant in the gene encoding 
methionine synthase : its relation with plasma homocysteine levels and risk of coronary 
heart disease in a Dutch case-control study. Thrombosis Research 110: 87-91. 

50. Choumenkovitch, S.F., Selhub, J., Bagley, P.J., Maeda, N., Nadeau, M.R., Smith, D.E. & 
Choi, S.-W. (2002) In the cystathionine ~i-synthase knockout mouse, elevations in total 
plasma homocysteine increase tissue S-adenosylhomocysteine, but responses of S-
adenosylmethionine and DNA methylation are tissue specific. J. Nutr. 132: 2157-2160. 

51. Yaghmai, R., Kashani, A.H., Geraghty, M.T., Okoh, J., Pumper, M., Tangerman, A., 
Wagner, C., Stabler, S.P., Allen, R.H., Mudd, S.H. &Braverman, N. (2002) Progressive 
cerebral edema associated with high methionine levels and betaine therapy in a patient 
with cystathionine ~-synthase (CBS) deficiency. Am. J. Med. Gen. 108: 57-63. 

52. Mattson, M.P. &Shea, T.B. (2003) Folate and homocysteine metabolism in neural 
plasticity and neurodegenerative disorders. Trends Neurosci. 26: 13 7-146. 

53. Mason, J.B. (2003) Biomarkers of nutrient exposure and status in one-carbon 
metabolism. J. Nutr. 153: 9415-9475. 

54. Pancharuniti, N., Lewis, C.A., Sauberlich, H.E., Perkins, L.L., Go, R.C.P., Alvarez, J.O., 
Macaluso, M., Acton, R.T., Copeland, R.B., Cousins, A.L., Gore, T.B., Cornwell, P.E. & 
Roseman, J.M. (1994) Plasma homocyst(e)ine, folate, and vitamin B-12 concentrations 
and risk for early-onset coronary artery disease. Am. J. Clin. Nutr. 59: 940-948. 

SS..Van Oort, F.V., Melse-Boonstra, A., Brouwer, I.A., Clarke, R., West, C.E., Katan, M.B., 
& Verhoef, P. (2003) Folic acid and reduction of plasma homocysteine concentrations in 
older adults: adose-response study. Am. J. Clin. Nutr. 77: 1318-1323. 

56. Brouwer, I.A., van Dusseldorp, M., West, C.E., Meyboom, S., Thomas, C.M.G., Duran, 
M., van het Hof, K.H., Eskes, T.K.A.B., Hautvast, J.G.A.J. & Steegers-Theunissen, 
R.P.M. (1999) Dietary folate from vegetables and citrus fruit decreases plasma 
homocysteine concentrations in humans in a dietary controlled trial. J. Nutr. 129: 113 5 -
1139. 

57. Ghoshal, A.K. &Farber, E. (1984) The induction of liver cancer by a dietary deficiency 
of choline and methionine without added carcinogens. Cancer Res. 5: 1367-1370. 

5 8. Miller, J.W., Nadeua, M.R., Smith, J. Smith, D. &Selhub, J. (1994) Folate-deficiency-
induced homocysteinaemia in rats: disruption of S-adenosylmethionine's coordinate 
regulation of homocysteine metabolism. J. Biochem. 298: 415-419. 

59. Cook, R.J., Horne, D.W. &Wagner, C. (1989) Effect of dietary methyl group deficiency 
on one-carbon metabolism in rats. J. Nutr. 119: 612-617. 



www.manaraa.com

27 

60. James, S.J., Po~gribny, I.P., Pogribna, M., Miller, B.J., Jernigan, S. & Melnyk, S. (2003) 
Mechanisms of DNA damage, DNA hypomethylation, and tumor progression in the 
folate/methyl-deficient rat model of hepatocarcinogenesis. J. Nutr. 13 3 : 3 7405-3 7475. 

61. Ratnam, S., Maclean, K.N., Jacobs, R.L., Brosnan, M.E., Kraus, J.P. &Brosnan, J.T. 
(2002) Hormonal regulation of cystathionine ~i-synthase expression in Liver. J. Biol. 
Chem . 2 7 7 : 42 912 -42 918 . 

62. Jacobs, R.L., Stead, L.M., Brosnan, M.E. &Brosnan, J.T. (2001) Hyperglucagonemia in 
rats results in decreased plasma homocysteine and increased flux through the 
transsulfuration pathway in liver. J. Biol. Chem. 276: 43 740-43 747. 

63. Fonseca, v., Keebler, M., Dicker-Brown, A., DeSouza, C., Poirier, L.A., Murthy, S.N. & 
McNamar, D.B. (2002) Cell S-adenosylmethionine and S-adenosylhomocysteine and 
enzymes in homocysteine metabolism in zucker rats. Metabolism 51:783-786. 

64. Poirier, L.A., Brown, A.T., Fink, L.M., Wise, C.K., Randolph, C.J., Delongchamp, R.R. 
& Fonseca, V.A. (2001) Blood S-adenosylmethionine concentrations and lymphocyte 
methylenetetrahydrofolate reductase activity in diabetes mellitus and diabetic 
nephropathy. Metabolism 5 0: 1014-1018. 

65. Yeo, E.-J. &Wagner, C. (1992) Purification and properties of pancreatic glycine N-
methyltransferase. J. Biol. Chem. 267: 24669-2474. 

66. Yeo, E.-J. &Wagner, C. (1994) Tissue distribution of glycine N-methyltransferase, a 
major folate-binding protein in liver. Proc. Natl. Acad. Sci. USA 91:210-214. 

67. Xue, G.-P. & Snoswell, A.M. (1985) Disturbance of methyl group metabolism in alloxan-
diabetic sheep. Biochem. Int. 10: 897-905. 

68. Rowling, M.J. &Schalinske, K.L. (2003) Retinoid acid and glucocorticoid treatment 
induce glycine N-methyltransferase and lower homocysteine concentration in rats and rat 
hepatoma cells. J. Nutr. 133: 3392-3398. 

69. Aida, K., Tawata, M., Negishi, M. & Onaya, T. (1997) Mouse glycine N-
methyltransferase is sexually dimorphic and regulated by growth hormone. Horm. Metab. 
29: 646-649. 

70. Schalinske, K.L. &Steele, R.D. (1996) Methotrexate alters carbon flow through hepatic 
folate-dependent one-carbon pool in rats. Carcinogenesis 17: 1695-1700. 

71. Apeland, T., Mansoor, M.A., Pentieva, K., McNulty, H. & Strandjord, R.E. (2003) 
Fasting and post-methionine loading concentrations of homocysteine, vitamin B2, and 
vitamin B6 in patients on antieplileptic drugs. Clin. Chem. 49: 1005-1008. 



www.manaraa.com

28 

72. Weber, M. & Dib. M. (2003) Folic acid and prevention of anomalies of fetal neural tube 
closing in women treated for epilepsy. Rev. Neurol. 159: 165-170. 

73. Trimble, K.C., Molloy, A.M., Scott, J.M. &Weir, D.G. (1993) The effect of ethanol on 
one-carbon metabolism: increased methionine catabolism and lipotrope methyl-group 
wastage. Hepatology 18: 984-9$9. 

74. Kim, S.K., Seo, J.M., Jung, Y.S., Kwak, H.E. &Kim, Y.C. (2003) Alterations in hepatic 
metabolism of sulfur-containing amino acids induced by ethanol in rats. Amino Acids 24: 
103-110. 

75. Fell, D. &Steele, R.D. (1986) Modification of hepatic folate metabolism in rats fed 
excess retinol. Life Sci. 38: 1959-1965. 

76. Schalinske, K.L. &Steele, R.D. (1993) 13-cis-retinoic acid and hepatic steatosis in rats. 
Biochem. Pharm. 46:319-325. 

77. Bershad, S.V. (2001) The modern age of acne therapy: a review of current treatment 
options. Mount Sinai J. Med. 68: 279-286. 

78. Wysowski, D.K., Swann, J. &Vega, A. (2002) Use of isotretinoin (accutane) in the 
United States: rapid increase from -1992 through 2000. J. Am. Dermatol. 46: 505-509. 

79. Rowling, M.J. & Schalinske, K.L. (2001) Retinoid compounds activate and induce 
hepatic glycine N-methyltransferase in rats. J. Nutr. 131: 1914-1917. 

80. Rowling, M.J., McMullen, M.H. &Schalinske, K.L. (2002) Vitamin A and its derivatives 
induce hepatic glycine N-methyltransferase and hypomethylation of DNA in rats. J. Nutr. 
132: 365-369. 

$1. McMullen, M.H., Rowling, M.J., Ozias, M.K. &Schalinske, K.L. (2002) Activation and 
induction of glycine N-methyltransferase by retinoids are tissue- and gender-specific. 
Arch. Bioch. Biophys. 401: 73-80. 



www.manaraa.com

29 

CHAPTER 2. ALL-TRANS-RETINOIC ACID RAPIDLY INDUCES 

GLYCINE N-METHYLTRANSFERASE IN ADOSE-DEPENDENT 

MANNER AND REDUCES CIRCULATING METHIONINE AND 

HOMOCYSTEINE LEVELS IN RATS 

A paper accepted by the Journal of Nutrition 

Marlies K. Ozias and Kevin L. Schalinske 

Abstract 

Glycine N-methyltransferase (GNMT) regulates the methyl group supply for S-

adenosylmethionine-dependent transmethylation reactions. Retinoids have been shown to 

perturb methyl group metabolism by increasing the abundance and activity of GNMT, 

thereby leading to the loss of methyl groups. Previous studies used pharmacological doses 

(30 µmol/kg BW) of various retinoids administered daily for a total of 10 d. Here, we 

examined the dose- and time-dependent relationship between all-Mans-retinoic acid (ATRA) 

administration and induction of GNMT, as well as determining additional indices of .methyl 

group and folate metabolism. For the dose-response study, rats were given either 0, 1, 5, 10, 

15 or 3 0 µmol ATRA/kg BW for 10 d. For the time-course study, rats received 3 0 µmol 

ATRA/kg BW for 0, 1, 2, 4, or 8 d. A. significant increase (1 OS%) in GNMT activity was 

observed with doses as low as 5 µmol/kg BW, whereas maximal induction (231 %)of GNMT 

activity was achieved at 30 µmol/kg BW. Induction of hepatic GNMT by ATRA was rapid, 

exhibiting a 31 %increase following a single dose (1 d) and achieving maximal induction 

(95%) after 4 d. Plasma methionine and homocysteine concentrations were decreased 42 and 

53%, respectively, in ATRA-treated rats compared to control values. In support of this 

finding, the hepatic activity of methionine synthase, the folate-dependent enzyme required 

for homocysteine remethylation, was elevated 40% in ATRA-treated rats. This work 

demonstrates that ATR.A administration exerts a rapid effect on hepatic methyl group, folate, 

and homocysteine metabolism at doses that are within the therapeutic range used by humans. 
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Introduction 

Methyl group and folate-dependent one-carbon metabolism play an important role in 

the methylation of phospholipids, neurotransmitters, proteins, and nucleic acids (1,2). These. 

interrelated pathways provide the needed methyl groups for numerous transmethylation 

reactions that ultimately affect human health, Transmethylation reactions in methyl group 

metabolism results in the production of S-adenosylhomocysteine (SAH) from S-

adenosylmethionine (SAM) (Figure 2.1). Following hydrolysis of SAH, the resulting 

homocysteine can undergo transsulfuration to produce cystathionine, which can eventually 

be metabolized to cysteine and glutathione, as well as other important compounds. 

Alternatively, remethylation of homocysteine and the concomitant conversion of ~-

methyltetrahydrofolate (5-methyl-THF) to tetrahydrofolate (THF) from the folate-dependent 

one-carbon pool results in the regeneration of methionine, the precursor for SAM (2). An 

inability to metabolize homocysteine by either transsulfuration and/or transmethylation leads 

to increased plasma levels, a characteristic associated with thromboembolic diseases and 

disruption of vascular wall maintenance (3,4). 

A number of regulatory mechanisms function to maintain optimal metabolism of 

folate, methyl groups, and homocysteine. SAM allosterically inhibits 5,10-

methylenetetrahydrofolate reductase (MTHFR), the enzyme that irreversibly produces 5-

methyl-THF for the subsequent remethylation of homocysteine, a reaction that requires the 

B12-dependent enzyme methionine synthase (MS) (5,6). SAM also serves as a positive 

modulator of cystathionine (3-synthase, the enzyme that catalyzes the formation of 

cystathionine from homocysteine as the initial step in the transsulfuration pathway (7). 

Regulation is also maintained by the action of glycine N-methyltransferase (GNMT), a key 

cytosolic enzyme that converts glycine to sarcosine to regulate the utilization of methyl 

groups and optimize the ratio of SAM: SAH (2,8). Because SAH is a potent inhibitor of 

most methyltransferases (9), the ratio of SAM: SAH and its regulation by GNMT controls 

transmethylation processes. GNMT is also a folate-binding protein that is allosterically 

inhibited by the folate coenzyme 5-methyl-THF (10,11). In addition to allosteric regulation, 
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FIGURE 2.1 Methyl group, homocysteine and folate metabolism. S-adenosylmethionine 
(SAM) serves as the methyl group donor in numerous transmethylation reactions (X —~ X-
CH3), resulting in the formation of S-adenosylhomocysteine (SAH) and eventually be 
converted to homocysteine. Homocysteine can be catabolized through the transsuifuration 
pathway, or remethylated back to methionine by the action of the B12-dependent enzyme, 
methionine synthase (MS). This latter reaction is dependent on the one-carbon pool to 
supply the necessary methyl group from 5-methyl-THF, irreversibly generated by the 
reduction of 5,10-methylene-THF via 5,10-methylene-THF-reductase (MTHFR). Glycine N-
methyltransferase (GNMT) regulates the SAM: SAH ratio and transmethylation potential by 
disposing of methyl groups in the form of sarcosine under conditions of excess. For further 
regulation of methyl group supply, SAM is an allosteric inhibitor of MTHFR, whereas 5-
methyl-THF inhibits the activity of GNMT. Abbreviations : GNMT, glycine N-
methyltransferase; MS, methionine synthase; MTHFR, 5,10-methylene-THF-reductase; 
SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine. 
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Thus, modulation of any of these regulatory mechanisms has the potential to disrupt the 

metabolism of folate, methyl groups, or homocysteine. 

We have shown that retinoids such as all-trans-retinoic acid (ATR.A) have the ability 

to perturb methyl group metabolism by increasing the activity and abundance of GNMT, 

thereby leading to the loss of methyl groups required for other biological processes (13 -16). 

These studies utilized large doses of ATRA (3 0 µmol/kg B W) administered for at least 7-10 

d. Thus, it is important to examine lower doses that are more relevant to human usage, as 

well as the length of treatment with ATRA. In the work presented here, we examined the 

dose- and time-dependent relationship between ATRA and the induction of GNMT as we11 as 

parameters associated with folate and homocysteine metabolism. 

Materials and Methods 

Chemicals and reagents. - 

Reagents were obtained from the following: S-adenosyl-L-[methyl-3H]methionine, 

-New' England Nuclear (Boston, MA); phenylmethylsulfonyl fluoride and ATR.A, Calbiochem 

(La Jolla, CA); goat anti-rabbit immunoglobulin G horseradish peroxidase, Southern 

Biotechnology (Birmingham, AL}; ECL Western blotting detection reagents, Amersham 

Pharmacia (Piscataway, NJ); and S-adenosyl-L-methionine, Sigma Chemical (St. Louis, 

MO). GNMT antibody was provided by Y-M.A. Chen, National Yang-Ming University, 

Taipei, Taiwan (17). All other chemicals were of analytical grade. 

Animals and diet. 

All animal experiments were approved by and conducted in accordance with Iowa 

State University Laboratory Animal Resources Guidelines. For all studies, male Sprague-

Dawley (Harlan Sprague-Dawley, Indianapolis, IN) rats (50-74 g) were housed in plastic 

cages in a room with a 12-h light: dark cycle and fed a control diet as described (16). Rats 

were acclimated to the control diet and the oral administration of corn oil for 3 d. For the 

dose-response study, ATRA was orally administered at 0, 1, 5, 10, 15, and 30 µmol/kg BW 

using corn oil as the vehicle for a total of 10 d. For the time-course study, rats received 
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either ATRA (3 0 µmol/kg B W) for 1, 2, 4, or 8 d or vehicle (0 and 8 d) . At the end of the 

treatment period, rats were anesthetized and whole blood was obtained via cardiac puncture 

for determination of plasma methionine and homocysteine concentrations. Liver samples 

were obtained for determining the enzymatic activity and abundance of GNMT and folate 

coenzyme concentrations, as well as the enzymatic activity of MTHFR and MS. 

Measurement of GNMT activity. 

GNMT enzymatic activity was assayed as described by Cook and Wagner (10) with 

minor modifications. Portions of liver were homogenized in three volumes of ice-cold 

phosphate buffered (10 mmol/L, pH 7.0) sucrose (0.25 mol/L) containing 1 mmol/L EDTA, 

1 mmol/L sodium azide, and 0.1 mmol/L phenylmethylsulfonylflouride. After centrifugation 

(20,000 x g for 30 min), supernatants were stored with 2-mercaptoethanol (10 mmol/L) at —

70° C. The assay contained 1 mol/L Tris buffer (pH 9.0), 5 mmol/L dithiothreitol, 10 

mmol/L glycine, and 1 mmol/L S-adenosyl-L-[methyl-'H]methionine (47.7 kBq/µmol) and 

the reaction was initiated with 250 µg of the protein supernatant. For the determination of 

total soluble protein in the tissue extract, a commercial kit (Coomassie Plus, Pierce, 

Rockford,. IL) based on the method of Bradford (18) was used with bovine senim albumin as 

a standard. 

Measurement of GNMT protein abundance. 

GNMT protein abundance was determined using immunoblotting procedures 

previously described (16). A 10-20% gradient SDS-polyacrylamide gel was used for the 

separation and subsequent determination of the GNMT monomer subunit (32 kDa) 

abundance. After separation, proteins were transferred to a nitrocellulose membrane and 

incubated for a minimum of 6-24 h with a monoclonal GNMT antibody (17) at 4 °C followed 

by 1 h incubation at room temperature with goat anti-rabbit horseradish peroxidase secondary 

antibody. Chemiluminescence detection was used to determine GNMT protein abundance 

following exposure to Kodak X-Omat AR film. Densitometric analysis was preformed using 

SigmaGel Software (SPSS, Chicago, IL). 
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Homocysteine analysis. 

Plasma total homocysteine concentrations were determined according to the method 

of Ubbink et al. (19). In brief, heparinized blood from the cardiac puncture was immediately 

centrifuged (3,800 x g for 6 min) and plasma samples were stored at —70° C until 

derivatization. For derivatization, N-acetylcysteine (1 mmol/L) was added as an internal 

standard to 300 µL of plasma. An equal volume of 100 mL/L tributylphosphine in 

dimethylformamide was added followed by incubation at 4 °C for ~0 min. The reaction was 

stopped with 100 mL/L trichloroacetic acid — 1.0 mmol/L EDTA and following 

centrifugation at 1,000 x g for 5 min, the supernatant was added to a solution containing 

borate buffer (0.125 mol/L, pH 9.5), sodium hydroxide (1.55 mol/L), and 4-fluoro-7-

sulfobenzofurazan (1 g/L). Samples were filtered and analyzed by HPLC using fluorometric 

detection and a mobile phase consisting of 960 mL/L potassium phosphate (0.1 mol/L, pH 

2.1) buffer and 40 mL/L acetonitrile. 

Determination of hepatic folate coenzyme concentrations. 

THE and 5 -methyl-THF were determined using HPLC and fluorometric detection 

according to Rebello (20) with some minor modifications. Briefly, portions of liver were 

homogenized in 4 volumes of ice-cold sodium acetate buffer (0.1 mol/L, pH 4.9) containing 

5 mL/L ascorbate and 20 mmol/L 2-mercaptoethanol under a steady stream of nitrogen, 

tightly capped, and stored at —70 °C until analysis. Samples were placed in a boiling water 

bath for 60 min and following centrifugation at 20,000 x g for 10 min, rat serum conjugase 

was added to an aliquot of the resulting supernatant and incubated in a shaking water bath for 

1 h at 37 °C. Following activation of Sep-Pak NH2 columns with acetonitrile and sodium 

acetate buffer (16 mmol/L, pH 4.5), samples were applied and washed with acetate buffer 

and sodium phosphate (0.1 mol/L) containing 50 mmol/L 2-mercaptoethanol. Folate 

coenzymes were separated on a Phenyl Radial-Pak column (waters, Milford, MA) and 

quantified using fluorometric detection. A gradient mobile phase operated at 2.0 mL/min 

consisted of: 760 mL/L sodium phosphate (0.1 moI/L, pH 7.5) — 240 mL/L acetonitrile for 4 

min; a linear gradient (2 min) to 5 00 mL/L — 5 00 mL/L and maintained from 6 to 10 min; a 

linear gradient (2 min) to 100 mL/L — 900 mL/L and maintained from 12-16 min; and a 
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linear gradient (2 min) back to initial conditions (760 mL — 240 mL/L) for up to 20 min to re-

equilibrate the column. 

MTHFR determination. 

The .activity of MTHFR was determined in Liver samples as previously described 

(21,22). Briefly, portions of liver were homogenized in 4 volumes of ice-cold potassium 

phosphate buffer (0.5 mol/L, pH 7.2) containing 0.1 mmol/L dithiothreitol, centrifuged at 

40,000 x g for 30 min, and stored at --70 °C until analysis. The assay mixture contained 1.0 

.mol/L potassium phosphate (pH 6.7), 0.5 mol/L sodium ascorbate, 0,1 mol/L EDTA, 10 

mmol/L menadione, 1.0 mmol/L FAD, and 25 mmol/L 5 -t 14CH3] -THF (74 Bq/µmol). The 

reaction was initiated with the protein supernatant and incubated for 3 0 min at 3 0 °C . The 

reaction was terminated with dimedone (3 g/L in 1 mol/L sodium acetate) and samples were 

placed in a boiling water bath for 5 min. After being placed on ice, a 1.0 mL aliquot was 

extracted with toluene and a 1.0 mL aliquot of the resulting supernatant (500 x g for 5 min) 

was subjected to liquid scintillation counting. 

MS determination. 

The activity of MS was determined as previously described (23). Briefly, liver 

supernatant samples were incubated at 37 °C for 1 h in a reaction mixture containing sodium 

phosphate buffer (500 mmol/L, pH 7.5), cyanocobalamin (1.3 µmol/L), dithiothreitol (1 

mol/L), SAM (10 mmol/L), 2-mercaptoethanol (82.4 mmol/L), homocysteine (100 mmol/L), 

and 15 mmol/L 5-(14CH3]-THF (6.44 kBq/µmol). Reactions were stopped with the addition 

of ice-cold water and samples were immediately applied to AG 1-X8 (Cl form) resin columns 

(Bio-Rad, Hercules, CA). Flow through fractions (3 mL total) were collected and subjected 

to liquid scintillation counting. 

Amino acid analysis. 

Amino acids from plasma samples were prepared by using a EZ:faastTM GC-MS 

analysis kit (Phenomenex, Torrance, CA). Derivatized samples were analyzed by gas 

chromatography-mass spectrometry (Agilient Technologies, 6890/5973). 
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Statistical analysis. 

The mean values of each treatment group were subjected to a one-way ANOVA (24). 

If the ANOVA was significant (P < 0.05), the means were compared using Fisher's least 

significant difference procedure. 

Results 

ATRA induced hepatic GNMT in adose-dependent manner. 

Hepatic GNMT activity (Figure 2.2A) and abundance (Figure 2.ZB) increased in 

response to graded levels of ATRA. For the 10-d treatment period, 5 µmol/kg BW was the 

lowest dose of ATRA that significantly increased (105%) GNMT activity. GNMT activity 

continued to increase with respect to the dose of ATRA administered, achieving a maximal 

response (231%) at 30 µmollkg BW. Immunoblotting analysis indicated that the changes in 

activity were also reflected in GNMT protein abundance. 

Hepatic GNMT was rapidly induced by administration of ATRA. 

GNMT activity was significantly increased 31 and b2% following a single dose of 

ATRA (30 µmol/kg BW) compared to either group of untreated rats (d 0 and 8, respectively) 

(Figure 2.3A) . Maximal .induction was achieved on d 4 and 8, exhibiting a 95 and 8 3 

increase, respectively, compared to control values on d 0. Hepatic GNMT protein abundance 

also increased as a function of treatment time with ATRA, (Figure 2.3B). 

Plasma homocysteine and methionine concentrations were significantly decreased by 

ATRA treatment. 

ATRA treatment resulted in a 5 3 %decrease in plasma homocysteine levels (Figure 

2.4). Similarly, plasma methionine concentrations were decreased 42% from 50.3 to 29.1 

µmol/L in control and ATRA-treated rats, respectively. 
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FIGURE 2.2 Dose-dependent induction of hepatic glycine N-methyltransferase (GNMT) by 
all-trans-retinoic acid (ATRA). Data are means ± SEM, n=6. Bars without common letter 
denote significance (P < 0.05). Panel A, GNMT activity as a function of graded doses of 
ATRA given for 10 d. Panel B, representative immunoblot of GNMT protein abundance 
following 10-d treatment with various doses of ATR.A. 
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FIGURE 2.3 Time-course induction of hepatic glycine N-methyltransferase (GNMT) by all-
trans-retinoic acid (ATRA) treatment. Data are means f SEM, n = 6. Asterisks denote 
values that were significantly different from control values; (*P < 0.05, * * P < 0.01). Panel 
A, GNMT activity as a function of treatment time with ATRA (30 µmol/kg BW). Open and 
closed circles represent mean values from control (vehicle-treated) and ATRA-treated rats, 
respectively. Panel B, representative immunoblot of GNMT protein abundance for each 
treatment time point. 
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FIGURE 2.4 All-trans-retinoic acid (ATRA) reduces the circulating concentrations of 
methionine and homocysteine. Following 10-d ATRA (30 l.tmol/kg BW) treatment, plasma 
samples were analyzed for amino acid concentrations. Data are means ~ SEM, n = 6. Bars 
with an asterisk denote significance from control values (*P < 0.05). 

Hepatic folate coenzyme concentrations and activity of MTHFR were not affected, 

whereas MS activity was increased by ATRA administration. 

The hepatic concentrations of THE and 5-methyl-THF were not affected by 

administration of ATRA (30 µmol/kg BW for 10 d) (Table 2.1). Likewise, the hepatic 

activity of MTHFR was not significantly altered following treatment with ATRA. In 

contrast, the hepatic activity of the homocysteine remethylation enzyme MS was elevated 

40% in ATRA-treated rats compared to control activity values. 
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Table 2.1 Effect of all-trans-retinoic acid (ATRA~) 
on folate coenzymes and enzymes 

ATRA (µmol/kg BW) 

0 30 

THF 

5 -methyl-THF 

MTHFR 

MS 

nmol/g l fiver 
1.74 ± 0.2 02 1.8 5 ± 0.44 

1.67±0.28 2.22±0.46 

nmol/(min • mg protein) 

226 ± 44 357 ± 85 

31.8±3.0 45.5±2.4* 

l Abbreviations: ATRA, all-trans-retinoic acid; MS, methionine synthase; MTHFR, 
5,10-methylenetetrahydrofolate reductase; THF, tetrahydrofolate. 
2Data are means ~ SEM, n = 6. Value with asterisk is significantly different from 
control value (* P < 0.05). 

Discussion 

The availability of methyl groups for SAM-dependent transmethylation reactions is 

important in the production of vital biological compounds. Thus, regulation of folate and 

methyl group metabolism is critical to ensure optimal health, because disruption of these 

interrelated pathways is associated with a number of detrimental conditions (4,25,26). We 

have shown here and in our previous studies that the administration of retinoid compounds in 

large doses for 7-10 d induced GNMT, thereby compromising the methylation of important 

biological compounds. Of particular significance in this study was the observation that the 

ability of ATRA to modulate GNMT and methyl group metabolism was rapid (i.e., a single 

dose), and could be demonstrated at a much lower level (5 µmol/kg BW). These findings 

have tremendous relevance for humans that use retinoids such as ATRA (tretinoin, 

Vesanoid°  or 13-cis-retinoic acid (isotretinoin, Accutane° ) in the treatment of certain 

cancers and skin disorders. Recommended dosages for both of these retinoid compounds 
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typically range from 2-7 µmol/ kg BW and are administered for a period of 15-20 wk (27). 

Although we have found that 5 µmol/kg BW was the minimum effective dose in a 10-d 

study, we would expect that even lower levels of retinoid compounds would be effective at 

perturbing GNMT and methyl group metabolism when administered for a longer time period. 

Taken together with our previous demonstration (14) that retinyl palmitate induced GNMT, 

although to a lesser extent than ATRA or 13-cis-retinoic acid, the unsupervised use of 

vitamin A supplements for a sufficient period of time may have adverse effects on methyl 

group metabolism as well. We are currently in the early stages of conducting research 

focused on the effect of chronic retinoid administration. 

We have extended our previous work by examining the potential alterations expected 

in homocysteine metabolism as a result of retinoid administration. The concentration of 

homocysteine can be modulated by changes in its production (i.e., via transmethylation) and 

metabolism by either the transsulfuration pathway or remethylation by folate-dependent 

and/or folate-independent mechanisms (28). For plasma homocysteine levels, renal 

homocysteine metabolism plays a significant role as well. In our studies, the marked 

induction of GNMT would be expected to result in the accumulation of homocysteine, 

particularly if the capacity of the transsulfuration and/or remethylation pathways were 

compromised. However, we -found that ATRA administration reduced circulating 

homocysteine levels, indicating that the metabolism of homocysteine may be enhanced. 

Likewise, we have reported in an earlier study that ATRA was effective at reducing elevated 

homocysteine concentrations to normal levels in adrenalectomized rats; however, the 

reduction of plasma homocysteine concentrations by ATR.A in intact animals did not reach 

statistical significance (16). This discrepancy may reflect the difference in the experimental 

design, as the earlier study was only for 5 d and utilized older rats. We have found in a 

number of studies that older rats exhibit increased sensitivity to retinoids, as indicated by 

further increases in GNMT activity, but are less sensitive to the effect of retinoids on 

homocysteine metabolism 1 . 

1 Knoblock, V.E. & Schalinske, K.L., unpublished data. 
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In an attempt to begin to address how retinoid administration modulates 

homocysteine metabolism, we examined the hepatic folate-dependent remethylation of 

homocysteine as a passible mechanism. Although the hepatic concentration of 5-methyl-

THF and the activity of MTHFR were not statistically altered, the elevated activity of MS 

clearly indicates that remethylation of homocysteine by the one-carbon pool was enhanced in 

ATRA-treated rats. Thus, it appears that the folate-dependent one-carbon pool attempts to 

compensate for the retinoid-mediated loss of methyl groups by increasing their supply. 

Additional in vivo regulation may contribute to homocysteine remethylation as well. For 

example, allosteric factors such as the concentration of SAM plays a significant role in the 

regulation of MTHFR by inhibiting its enzymatic activity (5,6). We have found that 

retinoids reduce hepatic SAM concentrations (29, 0); thus, an elevation in the endogenous 

MTHFR would be expected to further contribute to homocysteine remethylation. 

Similar to homocysteine, it appears that ATRA treatment increased the catabolism of 

methionine, as indicated by the reduction in circulating methionine levels. This observation 

supports our earlier work and others that retinoid compounds have the ability to enhance 

methionine catabolism under both normal and excess dietary .methionine conditions (29-32). 

This finding also underscores the implication that the effect of retinoids on hepatic sulfur 

amino acid metabolism may have an impact on reducing their availability for other tissues/ 

cells. 

It is not clear how retinoid administration may alter the metabolism of homocysteine 

in humans. Schulpis et al. (33) reported an inability to catabolize a methionine load and 

increased homocysteine levels in adults that received 0.5 mg/kg BW (i.e., 1.7 µmol/kg BW) 

isotretinoin (13-cis-retinoic acid) for 45 d; however, this may reflect the hepatotoxicity 

associated with long-term isotretinoin usage exhibited by these patients. In our rat studies 

using large (30 µmol/kg BW) doses of ATRA administered for 10 d, serum liver enzymes 

were not elevated (data not shown). It will be important in firture research to determine the 

potential impact of these findings on humans. Extrapolation of rat studies focused on factors 

that modulate homocysteine metabolism to the human situation has met with conflicting 

results. For example, the alterations seen in homocysteine metabolism as a function of 

diabetes appears to be similar to that observed in humans (34), whereas thyroid status has 
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opposing effects on homocysteine metabolism when comparing the findings from rat studies 

to those reported from human research (3 5). 

In summary, we have shown that the administration of ATRA, in doses equivalent to 

those used cynically, was effective at altering hepatic GNMT activity and potentially 

perturbing methyl group metabolism. Moreover, this effect was rapid and resulted in 

increased metabolism of methionine and homocysteine, the latter due, at least in part, to 

enhanced folate-dependent remethylation. These findings may have a significant impact on a 

number of individuals that may be exposed to retinoid usage. It has recently been reported 

that the use of isotretinoin has increased 2.5-fold in the last 8 years, averaging 800,000 new 

prescriptions per year (36). Moreover, it would be anticipated that a significant percentage of 

these individuals may have suboptimal nutritional status, polymorphisms of key enzymes, or 

a physiological condition that further compromises folate function and methyl group 

metabolism. We have recently shown that the combination of glucocorticoid treatment/ 

diabetes and retinoid administration exerts an additive effect on disrupting methyl group 

metabolism (16). 
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CHAPTER 3. GENERAL CONCLUSIONS 

Summary 

The role of the folate-dependent one-carbon pool and methyl group metabolism is 

important in health and disruptions to the interrelated cycles are implicated in the 

development of cardiovascular disease, cancer, and neural tube defects. Folate is needed for 

normal cellular function and perturbation from genetic enzyme polymorphisms, nutritional 

deficiencies, drug therapies or hormonal fluctuations can affect health, whether it is in the 

form of cardiovascular disease from excess homocysteine concentration, or the disruption of 

DNA synthesis leading to tumor formation. 

One such perturbation to methyl group metabolism has come in the form of synthetic 

retinoids that are administered in the field of dermatology and the treatment of cancer. These 

vitamin A derivatives are useful but may come at the expense of folate and methyl group 

metabolism. Current research in this area is trying to elucidate the connection between 

vitamin A and methyl group metabolism and ultimately, the consequences involved in the 

administration of these synthetic retinoids as well as the dietary intake of retinoids in high 

doses. 

The studies described in Chapter 2 demonstrate the ability of all-trans-retinoic acid 

(ATRA) on methionine metabolism. ATR.A administered in doses similar to those seen in 

clinical dermatology and for a shorter time increased the enzyme activity of glycine N-

methyltransferase (GNMT) and protein abundance and decreased plasma homocysteine and 

methionine concentrations, the result of enhanced homocysteine metabolism. The increased 

GNMT activity decreased the S-adenosylmethionine-dependent creative production that was 

reflected by a decrease in urinary creatinine (Appendix A). Transsulfuration metabolites 

from homocysteine were also affected and this was demonstrated by a decrease in both 

urinary inorganic sulfates and plasma glutathione. 

Our lab has shown that in addition to ATRA, other factors affect GNMT activity, 

leading to disruption of methyl group metabolism. Areas we have studied include dietary 

protein levels, glucocorticoid treatment, age and gender influence, and altered thyroid 
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function. Alterations in folate-dependent one-carbon and methyl group metabolism are 

driving our research with a goal of determining how modulation of these pathways affects 

overall health. One must be cautious when extrapolating this data from rats to humans but 

this research can give scientists valuable insight on disorders where these pathways are 

involved. 

Recommendations for Future Research 

Understanding the folate-dependent one-carbon pool and methyl group metabolism 

has taken a new turn as science has evolved with molecular techniques. Gene sequencing 

and DNA techniques aid in determining the characteristics of the enzymes and cofactors 

involved in these important pathways. The involvement of methyl group metabolism in 

diabetes has only recently been determined and the next 10 years of research in this area may 

assist in elucidating the etiology of this debilitating disease. The strong correlation of 

homocysteine and folate to cardiovascular disease has launched a multitude of studies 

looking at preventive lifestyle factors as well as the genetic influence that can cause this life-

threatening disease. Identifying plasma homocysteine levels as a marker may help in the 

prevention of cardiovascular disease and aid researchers with other diseases in which 

coenzymes of methyl group metabolism may be involved. 

In regards to the application of retinoids in the clinical setting, further research could 

be applied to examine the metabolites within methyl group metabolism as well as enzymes 

and coenzymes of rats treated with ATRA at low concentrations for a time frame (4-5 

months) similar to the clinical dosing regime. This would clarify the intermediate effect 

ATRA has on methyl group metabolism in humans are undergoing retinoid therapy. Using 

the same study design but continuing the life span of the rat to detect tumor formation would 

clarify if there were a carcinogenic effect from the DNA hypomethylation that occurs with 

ATR.A administration. Another step to take in researching retinoid therapy would be a 

clinical study to correlate the animal data to human application. Patients undergoing 

retinoid therapy could have blood samples tai{en for the analysis of red blood cell folate 

levels, lymphocyte DNA, and plasma homocysteine and methionine would help scientists 
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understand the relationship between retinoids and the folate-dependent one-carbon pool and 

methyl group metabolism. 



www.manaraa.com

50 

APPENDIX A. TRANSMETHYLATION AND TRANSSULFURATION 

PRODUCTS AFFECTED BY ALL-TRANS-RETINOIC ACID 

TREATMENT IN RATS 

Introduction 

The creatine-creatine phosphate system plays an important role in storing energy and 

the transmission of energy when needed. According to Stocker-Ipsiroglu (1), creatine is only 

produced in the liver and pancreas and transported to the brain and muscles where it is 

utilized by creatine kinase and ATP/ADP. Guanidinoacetate is the precursor of creatine and 

is methylated via the enzyme guanidinoacetate methyltransferase and consumes ~75% of the 

S-adenosylmethionine (SAM)-dependent methylation reactions in the liver. After utilization 

of this energy source, creatine is nonenzymatically cycled to creatinine and is excreted in the 

urine. Daily excretion of creatinine is directly proportional to total body creatine and can be 

helpful in diagnosis of creatine-deficient states. 

Another metabolite measured in the urine is inorganic sulfate, which is an end 

product of the transsulfuration pathway. Homocysteine is irreversibly converted to 

cystathionine, which is further catabolized to ammonium, a-ketobutyrate, and cysteine. 

cysteine can be involved in the production of glutathione. Stipanuk et al. (2) showed that 

low cysteine availability increased the utilization of glutathione, avoiding decreased levels. 

High cysteine levels favor the utilization of sulfate and taurine, removing the cell of excess 

cysteine. These sulfated products are excreted in the urine when no longer biologically 

needed. Plasma glutathione was measured as well as inorganic sulfates to determine if 

homocysteine catabolism induced by elevated activity of glycine N-methyltransferase 

(GNMT) altered these transsulfuration products. 



www.manaraa.com

51 

Materials and Methods 

Animals and diet. 

This study's design involving the use and care of animals is the same one in Chapter 

2 and is described in detail on pp. 32-33. In regards to the samples taken for analysis in this 

appendix, rats were anesthetized at the end of the treatment period and whole blood was 

obtained via cardiac puncture for the determination of plasma glutathione and creatinine. 

Rats from the 0 and 3 0 µmol/kg B W all-Mans-retinoic acid (ATRA) groups were placed in 

metabolic cages 24 hours before they were killed to collect urine for the analysis of urinary 

inorganic sulfates and creatinine. 

creatinine determination. 

Urinary creatinine concentrations were measured spectrophotometrically using a 

commercial kit (Sigma, St. Louis, MO) with slight alterations. Using urine from the same 

pool as the inorganic sulfate assay, 3.0 mL alkaline picrate solution (50 mL creatinine color 

reagent and 10 mL 1.0 N sodium hydroxide) was added to 100 µL of urine. After being 

vortexed, an aliquot of 2.0 mL of the mixture was transferred to a cuvette and read at 500 

nm. After an 8 min incubation period, 60.6 ~.iL acid reagent was added, vortexed and read 

after another incubation period of 5 min. Samples were analyzed by taking the difference 

between the two measurements and using the standard curve previously generated. Assay 

was performed on 0 and 3 0 µmol kg/B W ATRA. 

Inorganic sulfate determination. 

Urine levels from 0 and 30 µmol/kg BW ATRA were brought up to a total volume of 

22 mL and stored at —20 °C until analysis. A 50 µL aliquot was used to determine inorganic 

sulfate levels according to the method of Lundquist et al. (3). A solution consisting of 1.0 

mL HCl (0.5 mol/L) and 1.0 mL stabilizing agent [9.77 g barium chloride (0.04 mol/L), 150 

g polyethylene glycol 8000, and 200 µL sodium sulfate (50 mmol/L) into 1.0 L water] was 

added to the aliquot in duplicate, vortexed and read after ~ min incubation at 600 nm on a 

spectrophotometer. 
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Glutathione analysis. 

Plasma glutathione concentrations were determined according to the method of 

Ubbink et al. (4). In brief, heparinized blood from the cardiac puncture was immediately 

centrifuged (3 $00 x g for 6 min) and plasma samples were stored at —70 °C until 

derivatization. For derivatization, N-acetylcysteine (1 mmol/L) was added as an internal 

standard to 300 µL of plasma and 10% tributlyphosphine in dimethylformamide solution was 

added followed by incubation at 4 °C for 3 0 min. The reaction was stopped with 10% 

trichloroacetic acid-1.0 mmol/L EDTA and following centrifugation at 1000x g for 5 min, 

the supernatant was added to a solution containing borate buffer (0.125 mol/L, pH 9.5), 

sodium hydroxide (1.5 5 mol/L), and 4-fluoro-7-sulfobenzofurazan (1 mg/mL). Filtered 

samples were analyzed by HPLC using fluorometric detection and a mobile phase consisting 

of 96% potassium monophosphate (0.1 mol/L, pH 2.1) buffer and 4% acetonitrile. 

Statistical analysis. 

The mean values of each treatment group were subjected to a one-way ANOVA (5). 

If the ANOVA was significant (P < 0.05), the means were compared using Fisher's least 

significant difference procedure. T-test was used in the analysis of plasma glutathione 

values. 

Results 

Transsulfuration metabolites were decreased by ATRA administration. 

The transsulfuration metabolites glutathione and inorganic sulfates were affected by 

ATRA administration (30 µmol/kg BW for 10 d) (Table A.1). Plasma glutathione was 

significantly lower (P = 0.022) in rats treated with ATRA. Urinary inorganic sulfate levels 

were 21 %lower in rats treated with ATRA compared to control rats that were treated with 

vehicle, corn oil. 
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Plasma creatinine concentrations were not affected whereas urinary creatinine 

concentrations were lower in ATRA-treated rats. 

There was no difference in plasma creatinine in control versus rats treated with 

ATRA. The administration of ATRA to rats caused a 30% decrease in urinary creatinine 

(0.39 mg/24 h) compared to the control group( 0.56 mg/24 h) (Table A.l). 

Table A.1 Transsulfuration and 
transm ethylation metabolites 

ATRA 1 (µmol/kg BW) 

Metabolite 0 30 
Glutathione (µmol/L plasma) 21.5 t 2.1 153 t 0.8"` 
Urinary Sulfates (µmol/24h) 0.38 f 0.03 0.30 t 0.02' 
Urinary Creatinine (m~24h) 0.56 t 0.05 0.39 t 0.04' 
Creatinine (µmol/L plasma) 81.9 t 8.9 77.9 t 7.5 

1 Abbreviations : all-tans-retinoic acid, ATRA. 
2 Data are means ± SEM, n=6; #represent significance in ~-test using 0 and 30 ATR.A 
(µmol/kg BW) groups (P < 0.05); *represents significance in ANOVA (P < 0.05). 

Discussion 

The impact of ATRA on methyl group metabolism has been demonstrated in Chapter 

2; however, the subsequent decrease in metabolites from this pathway was not shown. The 

administration of ATRA in a pharmacological dose (30 µmol/lcg BW) for 10 days had a 

profound effect on products that arise from the SAM-dependent transmethylation reaction 

and the catabolism of homocysteine. Creatine is an important carrier of energy and is 

primarily produced in the liver. Its catabolism produces creatinine, which is then excreted 

from the body. This can provide researchers with a valuable test to measure creatine stores. 
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There are numerous methyltransferases available to utilize the methyl group SAM releases to 

produce important biological products. Another methyltransferase, glycine N-

methyltransferase (GNMT) is present for a regulatory need of maintaining the 

transmethylation potential. The administration of ATRA is known to induce GNMT activity 

and cause DNA hypomethylation, another product formed from the transmethylation reaction 

(6,7). The increase in GNMT activity appears to prevent other methyltransferases from 

methylating more important biological products (i.e., DNA, creatine). 

Additionally, homocysteine metabolism was perturbed by ATRA administration. 

Chapter 2 showed the decrease in plasma homocysteine and this is reflected in the decrease 

in plasma glutathione. Another end-product from homocysteine catabolism is inorganic 

sulfate and was also decreased in the urine after the administration of ATRA. These results, 

along with those conveyed in Chapter 2, can be examined together in the analysis of ATRA's 

impact and what the overall health consequences may be to those who use retinoids in high 

doses clinically or in a supplementation. 
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APPENDIX B. INCREASED PROTEIN INTAKE INDUCES GLYCINE 

N-METHYLTR.ANSFERASE ACTIVITY IN RATS TREATED WITH 

ALL-TRANS-RETINOIC ACID 

Introduction 

Methionine is an integral part of methyl group metabolism and the pathway is often 

referred to as methionine metabolism. Methionine favors conversion to S-

adenosylmethionine (SAM), an activated molecule that can regulate enzyme activity 

concurrent to its concentration (1). The enzymes methionine synthase (MS) and 

betaine:homocysteine methyltransferase (BHMT) respond to fluctuations in methionine 

concentration, as shown in Table l . l (2). A deficiency of methionine is handled efficiently 

as inducing enzyme activity within the methionine pathway, resulting from decreased SAM 

concentration by increasing activity and remethylating homocysteine (3). If the methionine 

concentration increases beyond the metabolic needs of SAM, the transsuifuration pathway 

lowers the methionine level via the enzyme cystathionine ~-synthase (CBS) to irreversibly 

catabolsz homocysteine (4,5). Finkelstein et al. (1) reported that when a high .protein diet is 

ingested followed by a low protein diet, the conversion of homocysteine to cystathionine, the 

first product in the transsulfuration pathway drops from 70% to 10%. The same phenomenon 

occurs when high doses of SAM and S-adenosylhomocysteine (SAH) are given, causing 

homocysteine catabolism to cystathionine to increase from 39% to 82%. Another enzyme 

that is affected by an increase in protein intalte is glycine N-methyltransferase (GNMT), 

which is viewed as a regulatory enzyme that is active in times of excess SAM levels. GNMT 

catalyzes the donation of the SAM methyl group to glycine to produce sarcosine, a molecule 

with no known biological function (6). Ingestion of a 3% methionine diet results in an 

increase in hepatic GNMT activity to rid the cell of excess methyl groups available from 

increased SAM concentration (7). 

Because of its overall impact on the body, the homeostasis of methyl group 

metabolism is important to study to determine what occurs when outside factors are added. 

Identifying the disturbances that take place when retinoids are administered has been 
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established. It is important to test the outcome that additional factors have on the pathway. 

The following results show the alterations of a 20% casein diet along with the administration 

of either vehicle (corn oil) or 30 µmol all-t~c~ns-retinoic acid (ATR.A)/kg Bw in the rat 

model. These treatment groups were compared to control groups fed a diet consisting of 

10% casein, a level of protein needed for basal metabolism, combined with the 

administration of ATRA. or the vehicle. 

Materials and Methods 

Chemicals and reagents. 

Reagents were obtained from the following: S-adenosyl-L-[methyl-3H]methionine, 

New England Nuclear (Boston, MA); phenylmethylsulfonyl fluoride and ATRA, Calbiochem 

(La Jolla, CA); and S-adenosyl-L-methionine, Sigma Chemical (St. Louis, MO). 

Animals and diet. 

All animal experiments were approved by and conducted in accordance with Iowa 

State University Laboratory Animal Resources Guidelines. For all studies, male Sprague-

Dawley (Harlan Sprague-Dawley, Indianapolis, IN) rats (50-74 g) were housed in plastic 

cages in a room with a 12-h light: dark cycle. Rats were acclimated to the control diet 

containing- 10% methionine from casein (8) with the exception of vitamin/mineral mix 93 for 

7 d and the oral administration of corn oil for 6 d. Half of the rats were fed a 20% methionine 

diet by increasing the casein concentration in the diet. ATRA was administered to the 

treatment group as 30 ~.imol/kg Bw using corn oil as the vehicle for a total of 8 d. At the end 

of the treatment period, rats were anesthetized and whole blood was obtained via cardiac 

puncture for determination of plasma homocysteine concentrations. Liver samples were 

obtained for determining the enzymatic activity of GNMT and folate coenzyme 

concentrations, as well as lipid and triglyceride content. 
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Measurement of GNMT activity. 

GNMT enzymatic activity was assayed as described by Cook and Wagner (6) with 

minor modifications. Portions of liver were homogenized in three volumes of ice-cold 

phosphate buffered (10 mmol/L, pH 7.0) sucrose (0.25 mol/L) containing 1 mmol/L EDTA, 

1 mmol/L sodium azide, and 0.1 mmol/L phenylmethylsulfonylflouride. After centrifugation 

(20,000 x g for 30 min), supernatants were stored with 2-mercaptoethanol (10 mmol/L) at —

70° C. The assay contained 1 mmol/L Tris buffer (pH 9.0), 5 mmol/L dithiothreitol, 10 

mmol/L glycine, and 1 mmol/L S-adenosyl-L-[methyl-3H]methionine (47.7 kBq/µmol) and 

the reaction was initiated with 250 µg of the protein supernatant. For the determination of 

total soluble protein in the tissue extract, a commercial kit (Coomassie Plus, Pierce, 

Rockford, IL) based on the method of Bradford (9) was used with bovine serum albumin as a 

standard. 

Lipid detection. 

Lipids were analyzed according to Folch et al. (10). 1.0 g of liver tissue was 

extracted and wrapped in aluminum foil and stored at -70 °C until analysis. After warming 

to room temp, liver samples were weighed, added to 10.0 mL ice-cold 2:1 

chloroform/methanol, and homogenized. Homogenate was then applied to a moistened 

Whatman filter placed in a funnel/graduated cylinder apparatus to be filtered. Additional 

chloroform/methanol solution was added to the sample to reach 20 mL. The funnels were 

removed and 4.0 mL calcium chloride (0.05%) was added. Enclosed graduated cylinders 

were inverted 5 times and allowed to set overnight. Extraction occurred and the upper phase 

was pipetted off carefully as to not disrupt the interface. 1.0 mL of upper phase solvent 

(8:4:3 containing chloroform: methanol: 0.04% calcium chloride) was added and gently 

mixed by rotation before the top phase was pipetted off. This procedure was performed 2 

more times and 5 drops of methanol were applied afterwards to remove the interface. The 

chloroform/methanol mixture was added to bring the solution up to 20 mL and gently mixed. 

Three aluminum cups per sample were preweighed and 5.0 mL of solution were added to 

each. Solution was allowed to evaporate overnight and aluminum cup was weighed to 

measure precipitate. Difference between initial cup weights and the precipitate represented 
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1/4 of total lipids/g liver. Leftover solution was stored at room temp for the analysis of 

triglycerides. 

Triglyceride detection. 

Triglycerides were measured spectrophotometrically using a commercial kit (Sigma, 

St. Louis, MO). Briefly, 100 µL solution from the lipid assay, was added to a test tube and 

the solvent was evaporated in a vacuum state. The reagents the kit provided were added, 

tubes were vortexed, and incubated for 10 min at 30 ° C. The solution was transferred to a 

cuvette and read at 540 nm. The absorbance was analyzed using the standard curve 

generated earlier and divided by the initial liver weight from the lipid assay to find mg 

triglyceride/g liver. 

Statistical analysis. 

The mean values of each treatment group were subjected to a two-way ANOVA (11). 

If the ANOVA was significant (P < 0.05), t11e means were compared using Fisher's least 

significant difference procedure and analyzed by one-way ANOVA to identify significance 

within groups. 

Results 

ATRA induced hepatic GNMT and was exacerbated by the 20% casein diet. 

GNMT activity was significantly higher in rats treated with ATR.A as shown in 

Figure B.1. The application of the 20% casein diet plus ATRA (30 µmol/kg BW) amplified 

GNMT activity 36% compared to control diet treated with ATRA. The GNMT activity of the 

20% casein diet ATRA-treated group was 184% higher compared to the group fed the 20% 

casein diet dosed with 0 ~.~mol/kg BW ATRA. 
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Figure B.1 Induction of GNMT in rats treated with ATRA and. or 20% casein diet. Data are 
means ± SEM, n = 5. Bars with asterisks differ, (* P < 0.0~, ** P < 0.01). 

20% casein diet had a protective effect from increased hepatic lipid and triglyceride 

levels in rats treated with ATRA compared to ATRA-treated rats on the control diet. 

Rats treated with ATRA (30 µmol/kg BW) experienced significantly higher hepatic 

lipids than control group (Figure B.2). This effect was not seen in ATRA-treated rats that 

consumed the 20% casein diet. The ATRA-treated group on the control diet had 230% 

higher hepatic triglyceride content compared to the ATRA-treated group on the 20% casein 

diet. 
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Figure B.2 The effect of ATRA and 20% casein diet on rats. ATRA increased liver 
lipids and triglycerides on rats fed the 10% casein diet but did not affect those on the 20% 
casein diet. a denotes significance compared to all other groups. b denotes significance 
compared only the 20% casein diet. Data are means ± SEM, n = 5. Bars with asterisks 
differ, (* P < 0.05). 

Discussion 

GNMT is an important regulatory enzyme in methyl group metabolism. We have 

shown that the application of ATR.A (30 µmol/kg BW) to rats induces its activity and 

abundance while ingesting a control diet (10% casein) (12,13). When the protein amount in 
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the diet increases (20% casein), there appears to be an additive effect with ATRA on GNMT 

activity. The increase in protein correlates to an increase in overall methionine, which 

corresponds to increased cellular methionine concentration within methyl group metabolism. 

The increased amount of methionine may have led to higher SAM concentration and a need 

for GNMT to dispose of excess methyl groups. The control diet includes 10% casein and 

added methionine to produce a total methionine content of 0.58%; additionally, the 20% 

casein diet used in this study has a total methionine content of 0.86%. Rowling et cal. (14) 

found an increase in GNMT activity from a 1.0% methionine diet while the 0.5 %methionine 

diet did not affect the activity. 

The two diets used in this study did not alter GNMT activity when ATRA was not 

administered (vehicle corn oil was given). However, GNMT activity from the 20% 

casein/ATR.A treatment group was 3 6% higher than the group receiving the 10% 

caseinlATRA. These results indicate the additive effect of two perturbations to methyl group 

metabolism and the subsequent increase in GNMT activity. 

The addition of increased methionine in the diet appears to protect the liver from 

ATRA-mediated triglyceride and hepatic lipid increases. Liver lipids were lowered in 

ATRA-treated rats fed the 20% casein diet compared to those treated with ATR.A on the 

control diet. Triglyceride levels of ATR.A-treated rats fed the control diet were significantly 

higher than rats fed the 20% casein diet. The impact of increased protein intal{e on methyl 

group metabolism is important to document. In cases of genetic polymorphisms of enzymes 

and other nutritional deficiencies, increased protein may have a detrimental effect in the 

methionine metabolism. However, it does have a protective effect against fatty liver, which 

is a side effect of ATRA administration (15) and is important in the area of hepatic cancer. 
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